Full-Stack Web
Development with Go

Build your web applications quickly using the Go
programming language and Vue.js

<> NANIK TOLARAM | NICK GLYNN

».Image

Table of Contents

Preface

Part 1: Building a Golang Backend

Chapter 1: Building the Database and Model
Chapter 3: Application Metrics and Tracing

Part 2:Serving Web Content

Chapter 4: Serving and Embedding HTML Content

Chapter 5: Securing the Backend and Middleware

Chapter 6: Moving to API-First

Part 3:Single-Page Apps with Vue and Go

Chapter 7: Frontend Frameworks

Chapter 8: Frontend Libraries

Chapter 9: Tailwind, Middleware, and CORS

Chapter 10: Session Management
Part 4:Release and Deployment
Chapter 11: Feature Flags

Chapter 12: Building Continuous Integration

Chapter 14: Cloud Deployment

Index

Other Books You May Enjoy.

Preface

Full-Stack Web Development with Go walks you through creating and
developing a complete modern web service, from authn/authz, interop,
server-side rendering, and databases, to modern frontend frameworks with
Tailwind and Go-powered APIs, complete with step-by-step explanations of
essential concepts, practical examples, and self-assessment questions. The
book will begin by looking at how to structure the app and look at the
relevant pieces, such as database and security, before integrating all the
different parts together to build a complete web product.

Who this book is for

Developers with experience of a mixture of frontend and backend
development will be able to put their knowledge to work with the practical
guide in this book. The book will give them the know-how to glue together
their skills and allow them to build a complete stack web application.

What this book covers

Chapter 1, Building the Database and Model, 1ooks at building our
database for our sample application. We will also explore different ways to
communicate with databases using Golang.

Chapter 2, Application Logging, considers how designing an application
requires examining it internally without going through reams of code, and
the only way to do this is by logging. We will learn how to do this by
running a centralized logger that will host all of our logging information.
We will also learn how to log from inside our application.

Chapter 3, Application Metrics and Tracing, considers how having logging
applied inside our application will assist in troubleshooting issues when the
application is running. The other thing that helps is information about the
interaction of the different components inside our application, which we
will also look at in this chapter.

Chapter 4, Serving and Embedding HTML Content, sees us begin work on
implementing the REST endpoints needed for our financial application. The
first version of the app will show simple content rendered by the backend.

Chapter 5, Securing the Backend and Middleware, notes that we need to
secure our application so that we can ensure users see only the data that
they should. We will discuss some of the ways we can protect our endpoints
using cookies, session management, and other types of middleware
available.

Chapter 6, Moving to API - First, starts by laying the groundwork for
frontend applications to consume our data. We’ll introduce
marshaling/unmarshaling data into custom structures and see how to set up
JSON-consuming endpoints and use cURL to verify.

Chapter 7, Frontend Frameworks, discusses the state of web development,
introduces the React and Vue frameworks, and sees us employ them to
create a simple app that's similar to our previous one.

Chapter 8, Frontend Libraries, examines how to leverage tools and libraries
to help us, as full stack developers, work fast!

Chapter 9, Tailwind, Middleware, and CORS, has us securing our app and
getting it talking to our Go-powered backend.

Chapter 10, Session Management, focuses on session management while
introducing state management with Vuex and how to structure apps based
On user permissions.

Chapter 11, Feature Flags, introduces feature flags (sometimes called
feature toggles) as a technique deployed to enable/disable certain features
of the application as required, depending on a given condition. For
example, if a newly deployed application containing a new feature has a
bug and we know it will take time for the bug to be fixed, the decision can
be made to turn off the feature without deploying any new code to do so.

Chapter 12, Building Continuous Integration, notes that while building
applications is a big part of the puzzle, we need to be sure that what the
team builds can be validated and tested properly. This is where continuous
integration comes in. Having a proper continuous integration process is
super important to ensure that everything deployed to production has been
tested, verified, and checked securely.

Chapter 13, Dockerizing an Application, notes that while developing an
application is one side of the coin, the other side is to make sure that it can
be deployed and used by our end user. To make deployment simpler, we can
package applications such that they can be run inside a container.
Operationally, this allows applications to be deployed in the cloud from
anywhere.

Chapter 14, Cloud Deployment, shows how deploying applications to a
cloud environment is the last step in delivering features for the end user to
use. Cloud deployment is complex and sometimes quite specific to
particular cloud vendors. In this chapter, we will focus on deploying
applications into the AWS cloud infrastructure.

To get the most out of this book

You will need the following installed on your computer: Node.js (version
16 or above), Docker (or Docker Desktop), the Golang compiler, and an
IDE such as GoLand or VSCode.

Software/hardware covered in the book Operating system requirements

Golang 1.16 and above mac0S, Linux, Windows (via WSL2)
Docker mac0S, Linux, Windows (via WSL2)
An IDE (VSCode or GolLand) mac0S, Linux, Windows

If you are using the digital version of this book, we advise you to type
the code yourself or access the code from the book’s GitHub repository
(a link is available in the next section). Doing so will help you avoid any
potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go.
If there’s an update to the code, it will be updated in the GitHub repository.

Download the color images

We also provide a PDF file that has color images of the screenshots and
diagrams used in this book. You can download it here:
https://packt.link/EO4sG.

Conventions used

There are a number of text conventions used throughout this book.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go
https://packt.link/EO4sG

Code in text: Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLSs, user input,
and Twitter handles. Here is an example: “We call
next.ServerHTTP(http.ResponseWriter, *http.Request) to continue
and indicate successful handling of a request.”

A block of code is set as follows:

go func() {

s.SetAttributes(attribute.String(“sleep”, “done”))
s.SetAttributes(attribute.String(“go func”, “1"))

30

Any command-line input or output is written as follows:

[INFO] 2021/11/26 21:11 This is an info message, with colors
(if the output is terminal)

Bold: Indicates a new term, an important word, or words that you see
onscreen. For instance, words in menus or dialog boxes appear in bold.
Here is an example: “You will get a Login unsuccessful message.”

Tips or important notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
email us at customercare@packtpub.com and mention the book title in the
subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we

mailto:customercare@packtpub.com

would be grateful if you would report this to us. Please visit

Piracy: If you come across any illegal copies of our works in any form on
the internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a
link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
book, please visit authors.packtpub.com.

Share Your Thoughts

Once you’ve read Full-Stack Web Development with Go, we’d love to hear
your thoughts! Please click here to go straight to the Amazon review page
for this book and share your feedback.

Your review is important to us and the tech community and will help us
make sure we’re delivering excellent quality content.

Download a free PDF copy of this
book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books
everywhere? Is your eBook purchase not compatible with the device of
your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version
of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code
from your favorite technical books directly into your application.

http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com/
file:///tmp/calibre_4.99.5_tmp_8cqoqjzt/2mxwiw0e_pdf_out/OPS/xhtml/pref001.xhtml

The perks don’t stop there, you can get exclusive access to discounts,
newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803234199

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email
directly

file:///tmp/calibre_4.99.5_tmp_8cqoqjzt/2mxwiw0e_pdf_out/OPS/xhtml/pref001.xhtml

Part 1: Building a Golang Backend

In Part 1, we will build the backend components for our sample
application. We will build the database with the models for the Go backend
of our application. We will also build secure REST API endpoints that will
have logging and tracing functionalities.

This part includes the following chapters:
Chapter 1, Building the Database and Model

Chapter 2, Application Logging
Chapter 3, Application Metrics and Tracing

Building the Database and Model

In this chapter, we will design the database that our sample application will
use. We will walk through the design of the database and look at some of
the tools that we are going to use to help us on our database design journey.
We will be using the Postgres database and will look at how to run it
locally using Docker. What is Docker? In simple terms, Docker is a tool
that allows developers to run a variety of applications such as the database,
the HT'TP server, system tools, and so on — locally or in the cloud. Docker
removes the need to install all the different dependencies required to use a
particular application such as a database, and it makes it easier to manage
and maintain applications than installing on bare metal in both local and
cloud environments. This is possible using Docker because it packages
everything into a single file similar to how a compressed file contains
different files internally.

We will learn how to design a database that supports the features that we
want to build, such as the following:

Creating an exercise
Creating a workout plan

Logging in to the system

We will also explore tools that will help in automatic code generation based
on SQL queries, which reduces the amount of database-related code that
needs to be written to a large extent. Readers will learn to use the tool to
also auto-generate all the relevant CRUD operations without writing a
single line of Go code.

In this chapter, we’ll be covering the following:

Installing Docker

Setting up Postgres

Designing the database
Installing sqlc

Using sqlc

Setting up the database
Generating CRUD with sqlc
Building the makefile

Technical requirements

In this book, we will be using version 1.16 of the Go programming
language, but you are free to use later versions of Go, as the code will work
without any changes. To make it easy, all the relevant files explained in this
chapter can be checked out at https://github.com/PacktPublishing/Full-
Stack-Web-Development-with-Go/tree/main/ChapterO1. To work on the
sample code in this chapter, make sure you change the directory to Chapter
1 —Full-Stack-Web-Development-with-Go/chapteri. If you are using
Windows as a development machine, use WSL2 to perform all the different
operations explained in this chapter.

Installing Docker

In this book, we will be using Docker to do things such as running
databases and executing database tools, among others. You can install either
Docker Desktop or Docker Engine. To understand more about the
difference between Docker Desktop and Engine, visit the following link:
https://docs.docker.com/desktop/linux/install/#differences-between-docker-
desktop-for-linux-and-docker-engine. The authors use Docker Engine in
Linux and Docker Desktop for Mac.

If you are installing Docker Desktop on your local machine, the following
are the links for the different operating systems:

Windows — https://docs.docker.com/desktop/windows/install/

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter01
https://docs.docker.com/desktop/linux/install/#differences-between-docker-desktop-for-linux-and-docker-engine
https://docs.docker.com/desktop/windows/install/

Linux — https://docs.docker.com/desktop/linux/install/
macOS — https://docs.docker.com/desktop/mac/install/

If you want to install Docker binaries, you can follow the following guide:
https://docs.docker.com/engine/install/binaries/.

Setting up Postgres

The database we chose for the sample application is Postgres; we chose
Postgres over other databases because of the wide variety of open source
tools available for building, configuring, and maintaining Postgres. Postgres
has been open source from version 1 since 1989 and it is used by big tech
startups worldwide. The project has a lot of community support in terms of
tools and utilities, which makes it easier to manage and maintain. The
database is suitable for small all the way to big replicated data stores.

The easiest way to run it locally is to run it as a Docker container. First, use
the following command to run Postgres:

docker run --name test-postgres \
-e POSTGRES_PASSWORD=mysecretpassword -p 5432:5432 -d
postgres

The command will run postgres on port 5432; if by any chance you have
other applications or other Postgres instances listening to this port, the

command will fail. If you need to run Postgres on a different port, change
the -p parameter (for example, -p 5555:5432) to a different port number.

If successful, you will see the container ID printed out. The ID will differ
from what is shown here:

f7bdfb7d2c10c5f0c9227¢c9b0a720f21d3c7fa65907eb0c546b8F20112621
102

Check whether Postgres is up and running by using docker ps. The next
thing to do is use the psql-client tool to connect to Postgres to test it out.

https://docs.docker.com/engine/install/binaries/
https://docs.docker.com/desktop/linux/install/
https://docs.docker.com/desktop/mac/install/

A list of the different Postgres client tools available on different platforms
can be found here: https://wiki.postgresql.org/wiki/PostgreSQL _Clients.

We will use the standard postgres psql tool using Docker. Open another
terminal and use the following Docker command to run psql:

docker exec -it test-postgres psql -h localhost -p 5432 -U
postgres -d postgres

What we are doing is executing the psql command inside the running
Postgres container. You will see output such as the following, indicating
that it has successfully connected to the Postgres database:

psql (12.3, server 14.5 (Debian 14.5-1.pgdgl10+1))

WARNING: psql major version 12, server major version 14.
Some psqgl features might not work.

Type "help" for help.

postgres=#

On a successful connection, you will see the following output. Note that the
warning message mentions server major version 14 — this is to indicate that
the server version is newer than the current psql version as per the

psql client will work without any problem with the Postgres server:

psql (12.3, server 14.0 (Debian 14.0-1.pgdgl10+1))

WARNING: psql major version 12, server major version 14.
Some psqgl features might not work.

Type "help" for help.

postgres=#

Exit psql to go back to the command prompt by typing exit.

The following is some guidance on common errors when trying to connect
to the database:

Error Message Description

psgl: error: could not connect to The password specified when running

https://wiki.postgresql.org/wiki/PostgreSQL_Clients
https://www.postgresql.org/docs/12/app-psql.html

server: FATAL: password Postgres does not match with the
authentication failed for user password passed in using psgl. Check
“postgres” the password.

psql: error: could not

connect to server: could not The IP address that you use to
connect to server: Host is connect to Postgres is wrong.
unreachable

With this, you have completed the local setup of Postgres and are now
ready to start looking into designing the database.

Designing the database

In this section, we will look at how to design the database to allow us to
store information for the fitness tracking application. The following
screenshot shows a mockup of the application:

FullyStacked G Fullystacked £

Login 1D yUur a00ount

Today's Workout

Email Address.

Banch Press

Login

Bench Press

Workout on 2/1/2021

Bench Press

Bench Press

Bench Press

No Mone Workouts

Figure 1.1 — Screenshot of the sample application

Looking at these functionalities, we will look at designing a database
structure that will look like the following entity relationship diagram:

Entity relationship diagram

An entity relationship diagram shows the relationships of entity sets stored
in a database.

images

Image_ID

Image_Data

Workout ID

Figure 1.2 — Entity relationship diagram of our fitness application

Let’s drill further into each table to understand the data that they contain:

Table Description
Name P
Users This table contains user information for login purposes.

Passwords will be stored as a hash, not plaintext.

This table contains images of exercises that users want
Images to do. This table will store all the exercise images
that the user uploads.

Exercises This table contains the name of the exercise that the
user wants to do. Users will define what kind of
exercise they want to do.

This table contains the number of sets of each exercise
that the user wants to do.

Sets

This table contains the workouts that the user wants to
Workouts do. Users define a workout as a combination of exercises
with the number of sets that they want to do.

The trade-off we are making to store images in the database is to simplify
the design; in reality, this might not be suitable for bigger images and
production. Now that we have defined the database structure and
understand what kind of data it will store, we need to look at how to
implement it. One of the major criteria that we want to focus on is to
completely separate writing SQL from the code; this way, we have a clear
separation between the two, which will allow higher maintainability.

Installing sqlc

We have defined the database structure so now it’s time to talk a bit more
about the tool that we are going to be using called sqlc. sqlc is an open
source tool that generates type-safe code from SQL; this allows developers
to focus on writing SQL and leave the Go code to sglc. This reduces the
development time, as sqlc takes care of the mundane coding of queries and

types.

developers focus on writing the SQL code that is needed for the application
and it will generate all the relevant code needed for the application. This
way, developers will be using pure Go code for database operations. The
separation is clean and easily trackable.

The following diagram shows the flow that developers normally adopt
when using the tool at a high level.

https://github.com/kyleconroy/sqlc

SQL written in .sql files

sqlc

.go code

Figure 1.3 — Flow to use sqlc to generate Go code

All SQL code will be written in . sql files, which will be read and
converted by the sqlc tool into the different Go code.

Download and install SQL binary by using the following command:

go install github.com/kyleconroy/sqlc/cmd/sqlc@latest

Make sure your path includes the GOPATH/bin directory — for example, in
our case, our path looks like the following:

.../snap/bin:/home/nanik/goroot/gol1.16.15/go/bin:/home/nanik/g
0/bin

If you don’t have GOPATH as part of the PATH environment variable, then you
can use the following command to run sqlc:

$GOPATH/bin/sqglc
Usage:

sqlc [command]

Available Commands:
compile Statically check SQL for syntax and type
errors
completion Generate the autocompletion script for the
specified shell

generate Generate Go code from SQL
help Help about any command
init Create an empty sqglc.yaml settings file
upload Upload the schema, queries, and configuration
for this project
version Print the sqlc version number

Flags:

-X, --experimental enable experimental features
(default: false)

-f, --file string specify an alternate config file
(default: sglc.yaml)
-h, --help help for sqlc

Use "sqlc [command] --help" for more information about a command.
At the time of writing, the latest version of sqlc is v1.13.0.

Now that we have installed the tool and understand the development
workflow that we will be following when using the tool, we will look at
how to use the tool for our application.

Using sqlc

First, let’s take a look at the different commands provided by sqlc and how
they work.

Commands Explanation

This command helps check SQL syntax and reports any

compile .
typing errors.

This command is to generate an auto-completion script
completion for your environment. The following are the supported
environments: Bash, Fish, PowerShell, and zsh.

generate A command to generate the .go files based on the
provided SQL statements. This will be the command that
we will be using a lot for the application.

This command is the first command that is used to

it
e initialize your application to start using this tool.

The following will show how to get started with using sqlc to set up a
project. Create a directory inside chapteri1 — for example, dbtest — and
change the directory to the new directory (dbtest). Next, we will run sqlc
with the init command:

sqlc init

This will automatically generate a file called sqlc.yaml, which contains a
blank configuration as shown here:

version: "1"
project:

ld : mnmn
packages: []

The sqlc.yaml contains configuration information that sqlc will use to
generate all the relevant . go code for our SQL statements.

Let’s take a look at the structure of the .yaml file to understand the different
properties. The following shows an example of a completed structure:

version: "1"

packages:
- name: "db"
path: "db"
gqueries: "./sqglquery"
schema: "./sqlquery/schema/"

engine: "postgresql"
sql_engine: "database/sql"
emit_db_tags: "true"
emit_prepared_queries: true
emit_interface: false
emit_exact_table_names: false

emit_empty_slices: false
emit_exported_queries: false
emit_json_tags: true
json_tags_case_style: "snake"
output_db_file_name: "db.go"
output_models_file_name: "dbmodels.go"
output_querier_file_name: "dbquerier.go"
output_files_suffix: "_gen"

The following table explains the different fields:

Tag Name

Name

Path

Queries

Schema

Engine

emit_db_tags

emit_prepared_queries

emit_interface

emit_exact_table_names

Description

Any string to be used as the package name.

Specifies the name of the directory that will
host the generated .go code.

Specifies the directory name containing the
SQL queries that sglc will use to generate the
.go code.

A directory containing SQL files that will be
used to generate all the relevant .go files.

Specifies the database engine that will be
used: sqglc supports either MySQL or Postgres.

Setting this to true will generate the struct
with db tags - for example:

type ExerciseTable struct {
ExerciseID int64 “db:"exercise_id"

ExerciseName string “db:"exercise_name"

}

Setting this to true instructs sqlc to support
prepared queries in the generated code.

Setting this to true will instruct sqlc to
generate the querier interface.

Setting this to true will instruct sqlc to

mirror the struct name to the table name.

Setting this to true will instruct sqlc to
emit_empty_slices return an empty slice for returning data on
many sides of the table.

Setting this to true will instruct sqglc to
allow the SQL statement used in the auto-
generated code to be accessed by an outside
package.

emit_exported_queries

Setting this to true will generate the struct
with JSON tags.

emit_json_tags

This setting can accept the following - camel,
pascal, snake, and none. The case style is used
for the JSON tags used in the struct.
Normally, this is used with emit_json_tags.

json_tags_case_style

Name used as the filename for the auto-

output_db_file name .
generated database file.

Name used as the filename for the auto-

output_models_file name .
generated model file.

Name used as the filename for the auto-
output_querier_file_name . .

generated querier file.

Suffix to be used as part of the auto-

output_files_suffix .
generated query file.

We have looked at the different parameters available in the tool, along with
how to use the .yaml file to specify the different properties used to generate
the relevant Go files. In the next section, we will set up our sample app
database.

Setting up the database

We need to prepare and create the database using the psql client tool. The
SQL database script can be found inside schema.sql under the db folder in
the GitHub repository, and we are going to use this to create all the relevant
tables inside Postgres.

Change the directory to chapter1 and run the Postgres database using the
following Docker command:

docker run --name test-postgres -e
POSTGRES_PASSWORD=mysecretpassword -v
$(pwd):/usr/share/chapterl -p 5432:5432 postgres

Once postgres is running, use the following command to enter into psql:

docker exec -it test-postgres psql -h localhost -p 5432 -U
postgres -d postgres

Once inside the psql command, run the following:

\1 /usr/share/chapterl/db/schema.sql

This will instruct psql to execute the commands inside schema.sql, and on
completion, you will see the following output:

postgres=# \1 /usr/share/chapterl/db/schema.sql
CREATE SCHEMA

CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE TABLE

To reconfirm that everything is set up correctly, use the following command
(do not forget to include the dot after gowebapp):

\dt gowebapp.*

You should see the following output:

postgres=# \dt gowebapp.*
List of relations

Schema Name | Type

I I
+ + +
gowebapp | exercises | table | postgres
I I I
I I I
I I I
I I I

gowebapp images table postgres
gowebapp sets table postgres
gowebapp users table postgres
gowebapp workouts table postgres
(5 rows)

Now that we have completed setting up our database, we are ready to move
to the next section, where we will be setting up sqglc to generate the Go files.

Generating CRUD with sqlc

CRUD stands for Create, Read, Update, and Delete, which refers to all
the major functions that are inherent to relational databases. In this section,
we will do the following for the application:

Complete the sqlc configuration file

Create SQL query files

Once done, we will be able to autogenerate the different files required to
allow us to perform CRUD operations to the database from the application.
First, open sqlc.yaml and enter the following configuration:

version: '1'
packages:
- name: chapteril

path: gen
schema: db/
gueries: queries/
engine: postgresql
emit_db_tags: true
emit_interface: false
emit_exact_table_names: false
emit_empty_slices: false

emit_exported_queries: false
emit_json_tags: true
json_tags_case_style: camel
output_files_suffix: _gen
emit_prepared_queries: false

Our application is now complete with all that we need for the database, and
sqlc will autogenerate the . go files. The following is how the application
directory and files will look:

— db

L— schema.sql
—— go.mod
—— queries

L— query.sql
— sqlc.yaml

We can run sqlc to generate the . go files using the following command:

sqlc generate

By default, sqlc will look for the sqlc.yaml file. If the filename is different,
you can specify it using the -f flag as follows:

sqlc generate -f sqlc.yaml

Once the operation completes, there will be no output; however, a new
directory called gen will be generated as shown here:

./gen/

— db.go

models.go

— query.sql_gen.go

We have completed the auto-generation process using sqlc; now, let’s take a
look at the schema and queries that sqlc uses to generate the code.

The following is a snippet of the schema.sql file that is used by sqlc to
understand the structure of the database:

CREATE SCHEMA IF NOT EXISTS gowebapp;
CREATE TABLE gowebapp.users (
User_1ID BIGSERIAL PRIMARY KEY,
User_Name text NOT NULL,

)

CREATE TABLE gowebapp.sets (

Set_ID BIGSERIAL PRIMARY KEY,
Exercise_ID BIGINT NOT NULL,
Weight INT NOT NULL DEFAULT ©

)

The other file sqlc uses is the query file. The query file contains all the
relevant queries that will perform CRUD operations based on the database
structure given here. The following is a snippet of the query.sql file:

-- name: ListUsers :many

-- get all users ordered by the username
SELECT *

FROM gowebapp.users

ORDER BY user_name;

-- name: DeleteUserImage :exec

-- delete a particular user's image
DELETE

FROM gowebapp.images 1

WHERE i.user_id = $1;

-- name: UpsertExercise :one
-- 1lnsert or update exercise of a particular id
INSERT INTO gowebapp.exercises (Exercise_Name)
VALUES ($1) ON CONFLICT (Exercise_ID) DO
UPDATE
SET Exercise_Name = EXCLUDED.Exercise_Name
RETURNING Exercise_1ID;
-- name: CreateUserImage :one
-- insert a new image
INSERT INTO gowebapp.images (User_ID, Content_Type,
Image_Data)
values ($1,

$2,
$3) RETURNING *;

Using query.sql and schema.sql, sqlc will automatically generate all the
relevant . go files, combining information for these two files together and
allowing the application to perform CRUD operations to the database by
accessing it like a normal struct object in Go.

The last piece that we want to take a look at is the generated Go files. As
shown previously, there are three auto-generated files inside the gen folders:
db.go, models.go, and query.sql_gen.go.

Let’s take a look at each one of them to understand what they contain and
how they will be used in our application:

db.go:

This file contains an interface that will be used by the other auto-generated
files to make SQL calls to the database. It also contains functions to create a
Go struct that is used to do CRUD operations.

A new function is used to create a query struct, passing in a DBTX struct. The
DBTX struct implementation is either sql.DB or sql.Conn.

The withTx function is used to wrap the Queries object in a database
transaction; this is useful in situations where there could be an update
operation on multiple tables that need to be committed in a single database
transaction:

func New(db DBTX) *Queries {
return &Queries{db: db}
}

func (q *Queries) WithTx(tx *sql.Tx) *Queries {
return &Queries{
db: tx,
}
¥

models.go:

This file contains the struct of the tables in the database:

type GowebappExercise struct {
ExerciselD int64 “db:"exercise_id"
json:"exerciseID""
ExerciseName string “db:"exercise_name"
json:'"exerciseName""

}
type GowebappWorkout struct {
wWorkoutID int64 “db:"workout_id"
json:"workoutID""
UserID int64 “db:"user_id" json:"userID""
SetID int64 "db:"set_id" json:'"setID""

StartDate time.Time "db:"start_date"
json:"startDate""

query.sqgl_gen.go:

This file contains CRUD functions for the database, along with the different
parameters struct that can be used to perform the operation:

const deleteUsers = "-- name: DeleteUsers :exec
DELETE FROM gowebapp.users
WHERE user_id = $1

func (g *Queries) DeleteUsers(ctx context.Context,
userID int64) error {

_, err := g.db.ExecContext(ctx, deleteUsers, userID)
return err

}

const getUsers = "-- name: GetUsers :one

SELECT user_id, user_name, pass_word_hash, name, config,
created_at, is_enabled FROM gowebapp.users
WHERE user_id = $1 LIMIT 1

func (g *Queries) GetUsers(ctx context.Context, userID
int64) (GowebappUser, error) {

row := (¢.db.QueryRowContext(ctx, getUsers, userlID)

var 1 GowebappUser

err := row.Scan(
&i.UserlID,
&i.UserName,
&i.PassWordHash,
&i.Name,
&i.Config,
&i.CreatedAt,
&i.IsEnabled,

)

return i, err

Now that the database and auto-generated data to perform CRUD
operations are complete, let’s try all this by doing a simple insert operation
into the user table.

The following is a snippet of main.go:

package main
import (

)

func main() {

// Open the database
db, err := sql.Open("postgres", dbURI)
if err != nil {
panic(err)
¥
// Connectivity check
if err := db.Ping(); err != nil {
log.Fatalln("Error from database ping:", err)
¥
// Create the store
st := chapterl.New(db)
st.CreateUsers(context.Background(),
chapterl.CreateUsersParams{

UserName: "testuser",
PassWordHash: "hash",
Name: "test",

1)

The app is doing the following:

1. [Initializing the URL and opening the database
2. Pinging the database

3. Creating a new user using the CreateUsers(..) function

Make sure you are in the chapter1 directory and build the application by
running the following command:

go build -o chapteril

The compiler will generate a new executable called chapteri. Execute the
file, and on a successful run, you will see the data inserted successfully into
the users table:

2022/05/15 16:10:49 Done!
Name : test, ID : 1

We have completed setting up everything from the database and using sqlc
to generate the relevant Go code. In the next section, we are going to put
everything together for ease of development.

Building the makefile

A makefile is a file that is used by the make utility; it contains a set of tasks
consisting of different combined shell scripts. Makefiles are most used to
perform operations such as compiling source code, installing executables,
performing checks, and many more. The make utility is available for both
macOS and Linux, while in Windows, you need to use Cygwin
(https:/www.cygwin.com/) or NMake (https://docs.microsoft.com/en-
us/cpp/build/reference/nmake-reference).

We will create the makefile to automate the steps that we have performed in
this chapter. This will make it easy to do the process repetitively when
required without typing it manually. We are going to create a makefile that
will do tasks such as the following:

https://www.cygwin.com/
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference

Bringing up/down Postgres

Generating code using sqlc

The makefile can be seen in the chapter1 directory; the following shows a
snippet of the script:

.PHONY : postgresup postgresdown psql createdb
teardown_recreate generate
postgresup:

docker run --name test-postgres -v
$(PWD) :/usr/share/chapterl -e POSTGRES_PASSWORD=$(DB_PWD) -p
5432:5432 -d $(DB_NAME)

task to create database without typing it manually
createdb:

docker exec -it test-postgres psql $(PSQLURL) -c "\i
/usr/share/chapteri1/db/schema.sql"

With the makefile, you can now bring up the database easily using this
command:

make postgresup

The following is used to bring down the database:

make postgresdown

sglc will need to be invoked to regenerate the auto-generated code
whenever changes are made to the schema and SQL queries. You can use
the following command to regenerate the files:

make generate

Summary

In this chapter, we have covered the different stages that we need to go
through to set up the database for our fitness application. We have also
written a makefile to save us time by automating different database-related
tasks that will be needed for the development process.

In the next chapter, we will look at logging for our sample application.
Logging is a simple, yet crucial component. Applications use logging to
provide visibility into the running state of an application.

Application Logging

Building any kind of application to fulfill a user’s need is one piece of the
puzzle; another piece is figuring out how we are going to design it so that
we can support it in case there are issues in production. Logging is one of
the most important things that need to be thought about thoroughly to allow
some visibility when a problem arises. Application logging is the process of
saving application events and errors; put simply, it produces a file that
contains information about events that occur in your software application.
Supporting applications in production requires a quick turnaround, and to
achieve this, sufficient information should be logged by the application.

In this chapter, we will look at building a logging server that will be used to
log events (e.g., errors) from our application. We will also learn how to
multiplex logging to allow us to log different events based on how we
configure it. We will cover the following in this chapter:

Exploring Go standard logging
Local logging
Writing log messages to the logging server

Configuring multiple outputs

Technical requirements

All the source code explained in this chapter can be checked out at
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-
Go/tree/main/Chapter02, while the logging server can be checked out at
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-
Go/tree/main/logserver

Exploring Go standard logging

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter02
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/logserver

In this section, we will look at the default logging library provided by the
Go language. Go provides a rich set of libraries; however, like every other
library, there are limitations — it does not provide leveled logging (INFO,
DEBUG, etc.), file log file features, and many more. These limitations can be
overcome by using open source logging libraries.

Go provides very diverse and rich standard libraries for applications.
Logging is one of them, and it is available inside the 1og package. The
following documentation link provides complete information on the
different functions available inside the https://pkg.go.dev/log@latest
package.

Another package that is available in Go standard library is the fmt package,
which provides functions for I/O operations such as printing, input, and so
on. More information can be found at https://pkg.go.dev/fmt@latest.
The available functions inside the 1og package are similar to the fmt
package, and when going through the sample code, we will see that it is
super easy to use.

The following are some of the functions provided by the 1og package
(https://pkg.go.dev/log):

func (1 *Logger) Fatal(v ...interface{})

func (1 *Logger) Fatalf(format string, v ...interface{})
func (1 *Logger) Fatalln(v ...interface{})

func (1 *Logger) Panic(v ...interface{})

func (1 *Logger) Prefix() string

func (1 *Logger) Print(v ...interface{})

func (1 *Logger) Printf(format string, v ...interface{})
func (1 *Logger) Println(v ...interface{})

func (1 *Logger) SetFlags(flag int)

func (1 *Logger) SetOutput(w io.Writer)

func (1 *Logger) SetPrefix(prefix string)

Let’s take a look at the example code from the sample repository,
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-
Go/tree/main/Chapter02. The main.go file resides inside example/stdlog.
To understand how to use the 1log package, build and run the code:

mailto:https://pkg.go.dev/log@latest
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter02

go run

On a successful run, you will get the following output:

2021/10/15 10:12:38 Just a log text
main.go:38: This is number 1
10:12:38 {
«name»: «Cake»,
«batters»: {
«batter»: [

{
«id»: «001»,

«type»: «Good Food»
]
+
«topping»: [

«id»: «002»,
«type»: «Syrup»

The output shows that the standard logging library is configurable to allow
different log output formats — for example, you can see in the following that
the message is prefixed with the formatted date and time:

2021/10/15 10:12:38 Just a log text

The function that takes care of formatting the prefix for logging is the
SetFlags(..) function:

func main() {

// set log format to - dd/mm/yy hh:mm:ss
ol.SetFlags(log.LstdFlags)
ol.Println(«Just a log text»)

The code sets the flag to use LstdFlags, which is a combination of date and
time. The following table shows the different flags that can be used:

Flag Explanation

Ldat A flag to specify the date in the local time zone in
e the format YYYY/MM/DD

Lo A flag to specify time using the local time zone in
1lme

the format HH:MM:SS
Lmicroseconds A flag to specify in microseconds
Llongfile A flag to specify the filename and line number
Lshortfile The final filename element and line number

When using the Ldate or Ltime flag, we can use this flag

LUTC
to specify using UTC instead of the local time zone
_ A flag to specify the prefix text to be shown before
Lmsgprefix
the message
This flag uses the standard flag that has been
LstdFlags

defined, which is basically Ldate Or Ltime

The standard library can cover some use cases for application log
requirements, but there are times when applications require more features
that are not available from the standard library — for example, sending log
information to multiple outputs will require extra functionality to be built,
or in another scenario, you might need to convert nested error logs into
JSON format. In the next section, we will explore another alternative for
our sample application.

Using golog

Now that we understand what is available in the standard library, we want
to explore the option of using a library that can provide us with more
flexibility. We will look at the golog open source project

(https://github.com/kataras/golog). The golog library is a dependency-free
logging library that provides functionality such as leveled logging (INFo,
ERROR, etc.), JSON-based output, and configurable color output.

One of the most used features of logging is log levels, also known as
leveled logging. Log levels are used to categorize output information from
an application into different severity levels. The following table shows the
different severity levels:

INFO Just for information purposes

Something is not running correctly, so keep an eye out for it
WARN |
in case there are more severe errors

ERROR There 1is an error that will need some attention

Information that is important to assist in troubleshooting in
DEBUG production, or added into the application for tracing
purposes

Something bad happened in the application that requires

FATAL . _ . : :
immediate response/investigation

Example code can be found inside the example/golog directory. Build and
run the code, and you will get the following output:

2021/10/15 13:43 This is a raw message, no levels, no colors.

[INFO] 2021/10/15 13:43 This is an info message, with colors (if the output is terminal)
[WARN] 2021/10/15 13:43 This is a warning message

[ERRO] 2021/10/15 13:43 This is an error message

[DBUG] 2021/18/15 13:43 This is a debug message

IFTALI 2021/10/15 13:43 Fatal will exit no matter what

Figure 2.1 — Example of golog output

Each prefix of the log messages is of a different color, which corresponds to
the different severity levels; this is useful when you are going through a
long list of log messages. Different log levels are assigned different colors
to make it easy to go through them.

https://github.com/kataras/golog

The code to generate this log is similar to the standard library code, as
shown here:

func main() {
golog.SetLevel(«error»)
golog.Println(«This is a raw message, no levels, no
colors.»)

golog.Info(«This is an info message, with colors (if the
output 1is terminal)»)

golog.Warn(«This is a warning message»)

golog.Error(«This is an error message»)

golog.Debug(«This is a debug message»)

golog.Fatal(Fatal will exit no matter what,
but it will also print the log message if
logger»>s Level is >=FatallLevel)

The library provides level-based logging. This means that the library can
show log messages based on what is configured to be shown; for example,
for development, we want to configure the logger to show all log messages,
while in production, we want to show only error messages. The following
table shows what the output will look like when different levels are
configured for golog:

Level Output

2021/10/15 12:07 This is a raw message, no levels, no

colors.

[INFO] 2021/10/15 12:07 This is an info message, with

golog.SetLevel("info") COlOI’S (lf the Output iS tel’minal)
[WARN] 2021/10/15 12:07 This is a warning message
[ERRO] 2021/10/15 12:07 This is an error message

[FTAL] 2021/10/15 12:07 Fatal will exit no matter what

golog.SetLevel("debug") 2021/10/15 12:08 This is a raw message, no levels, no

colors.

[INFO] 2021/10/15 12:08 This is an info message, with

colors (if the output is terminal)

[WARN] 2021/10/15 12:08 This is a warning message

[ERRO] 2021/10/15 12:08 This is an error message
[DBUG] 2021/10/15 12:08 This is a debug message

[FTAL] 2021/10/15 12:08 Fatal will exit no matter what

2021/10/15 12:08 This is a raw message, no levels, no
colors.

golog.SetLevel("warn") [WARN] 2021/10/15 12:08 This is a warning message
[ERRO] 2021/10/15 12:08 This is an error message

[FTAL] 2021/10/15 12:08 Fatal will exit no matter what

2021/16/15 12:11 This is a raw message, no levels, no

colors.

golog.SetLevel("error")
[ERRO] 2021/10/15 12:11 This is an error message

[FTAL] 2021/10/15 12:11 Fatal will exit no matter what

2021/160/15 12:11 This is a raw message, no levels, no
golog.SetLevel("fatal") colors.

[FTAL] 2021/10/15 12:11 Fatal will exit no matter what

We covered golog and its features in this section, and now we have a good
understanding of the different options available for us to use for logging. In
the next section, we will look at golog a bit more.

Local logging

Now that we have an idea of how to use golog, we are going to use more of
its features to extend it. The library provides a function allowing
applications to handle writing the log messages for each log level — for
example, an application wants to write all errors into a file while the rest
print out into the console.

We are going to take a look at the example code inside the
example/gologmoutput directory. Build and run it and you will see two
new files created called infoerr.txt and infolog. txt. The output from
both files will look as follows:

[ERRO] 2021/11/26 21:11 This is an error message [INFO]
2021/11/26 21:11 This is an info message, with colors (if
the output is terminal)

The app uses the os.0penFile standard library to create or append files
called infolog. txt and infoerr.txt, which will contain different log
information that is configured using the golog SetLeveloutput function.
The following is the snippet of the function that configured the different
logging output using golog:

func configureLogger() {
// open infolog.txt append if exist (0s.O_APPEND) or
// create if not (0s.0_CREATE) and read write
// (0s.0_WRONLY)
infof, err := o0s.OpenFile(logFile,
0S.0_APPEND|0s.0_CREATE|0s.0_WRONLY,
0666)

golog.SetLevelOutput(«info», infof)

// open infoerr.txt append if exist (0s.O_APPEND) or
create if not (0s.0_CREATE) and read write

// (0s.0_WRONLY)

// errf, err := os.0OpenFile(«infoerr.txt»,
0S.0_APPEND|0s.0_CREATE|0s.0_WRONLY,
0666)

golog.SetLevelOutput(«error», errf)

}

The rest of the log-level messages are written to stdout, which is
configured by default by the library.

In this section, we learned how to configure golog to allow us to log errors
and information separately. This is super useful as, in production, we will
have a hard time if we log everything into a single file. In the next section,
we will look at building our own simple logging server to accept log
requests from our application.

Writing log messages to the logging
server

In the modern cloud environment, there are multiple instances of the same
application running on different servers. Due to the distributed nature of the
cloud environment, it will be hard to keep track of the different logs
produced by the different application instances. This will require using a
centralized logging system that will be able to capture all the different log
messages from the different applications and systems.

For our needs, we will build our own logging server to capture all log
messages in one single place; the code can be found at
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-
Go/tree/main/logserver. The logging server will be a central place that will
collate log information from our application, which will help in
troubleshooting when our applications are deployed in a cloud environment.
The downside of having a central logging server is that when the logging
server goes down, we have no visibility of the logging information except
by going to the server that hosts the applications.

REST stands for representational state transfer; in layman’s terms, it
describes a server that uses the HTTP protocol and methods to
communicate to resources in the server. Information is delivered in different
formats, with JSON being the most popular format. It is language agnostic,
which means that the logging server can be used by any application that can
send and receive over HTTP.

On a successful build, the logging server will display the following
message:

2021/10/15 23:37:31 Initializing logging server at port 8010

Once the logging server is up, go back to the chapter2 root directory where
the sample app resides and test the app by running the following command:

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/logserver

make build

On completion, run the new binary called sampledb. The sampledb app will
send log messages to the logging server:

"{\n \"timestamp\": 1634301479,\n \"levell":

\"info\",\n \"message\": \"Starting the
application...\"\n}\n"

"{\n \"timestamp\": 1634301479,\n \"levell":

\"info\",\n \"message\": \'"Database connection fine\"\n}\n"
"{\n \"timestamp\": 1634301479,\n \"level\":

\"info\",\n \"message\": \"Success - user creation\"\n}\n"
"{\n \"timestamp\": 1634301479,\n \"levell":

\"info\",\n \"message\": \'"Success - exercise
creation\"\n}\n"

"{\n \"timestamp\": 1634301479,\n \"level\":

\"info\",\n \"message\": \"Application complete\"\n}\n"
"{\n \"timestamp\": 1634301479,\n \"levell":

\"info\",\n \"message\": \"Application
complete\"\n}\nut\"\n}\n"

The logging server runs as a normal HTTP server that listens on port 8010,
registering a single endpoint, /1og, to accept incoming log messages. Let’s
go through it and try to understand how the logging server works. But
before that, let’s take a look at how the server code works:

import (
ééithub.com/gorilla/mux»

)

func runServer(addr string) {
router = mux.NewRouter ()
initializeRoutes()

log.Fatal(http.ListenAndServe(addr, router))
}

The server is using a framework called Gorilla Mux
(github.com/gorilla/mux), which is responsible for accepting and
dispatching incoming requests to their respective handler. The gorilla/mux
package that we are using for this sample is used actively by the open

http://github.com/gorilla/mux

source community; however, it is, at the moment, looking for a maintainer
to continue the project.

The handler that takes care of handling the request is inside
initializeRoutes(), as shown here:

func initializeRoutes() {
router.HandleFunc(«/log»,
loghandler).Methods(http. MethodPost)

}

The router.HandleFunc(..) function configured the /1log endpoint, which
will be handled by the loghandler function. Methods("POST") is
instructing the framework that it should accept only the PosT HTTP method
for incoming requests that hit the /1og endpoint.

Now we are going to take a look at the loghandler function, which is
responsible for processing the incoming log messages:

func loghandler(w http.ResponseWriter, r *http.Request) {
body, err := ioutil.ReadAll(r.Body)

w.WriteHeader (http.StatusCreated)
}

The http.ResponseWriter parameter is a type that is defined as an
interface to be used to construct an HTTP response — for example, it
contains the writeHeader method, which allows writing header into the
response. The http.Request parameter provides an interface for the
function to interact with the request received by the server — for example, it
provides a Referer function to obtain a referring URL.

The loghandler function does the following:

1. Reads the request body as it contains the log message.

2. On successful reading of the body, the handler will return HTTP
status code 201 (StatusCreated). Code 201 means the request has
been processed successfully and the resource (in this case, the log

JSON message) has been created successfully, or in our case, printed
successfully.

3. Prints out the log message to stdout.

For more detailed information about the different standard HTTP status
codes, refer to the following website: https://developer.mozilla.org/en-
US/docs/Web/HTTP/Status.

We have learned how to add logs to an application and how to build a
simple logging server that can be hosted separately from our application. In
the next section, we will create a logging wrapper that will allow our
application to choose whether it wants to log locally or log to a server.

Configuring multiple outputs

Why do we want to configure multiple outputs? Well, it is useful as, during
development, it is easier to look at logs locally for troubleshooting
purposes, but in production, it’s not possible to look at a log file, as
everything will be inside the logging server.

We are going to write a thin layer of wrapper code that will wrap the golog
library; the code that we are going to look at is inside the chapter2/
directory, inside the logger/log.go file. The benefit of having a wrapper
code for the golog library is to isolate the application for interfacing
directly with the library; this will make it easy to swap to different logging
libraries when and if required. The app configured the wrapper code by
passing the parsed flag to the SetLoggingOutput(..) function.

Build the application by running the following:

make build

Then, run it, passing the flag to true as follows to write the log message to
stdout:

./sampledb -local=true

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

The debug log will be printed out in stdout:

[DBUG] 2021/10/17 19:15 Application logging to stdout = true

Figure 2.2 — Log output from sampledb
All info log messages will be printed out into the logs. txt file:

[INFO] 20821/168/17 19:16 Starting the application...
[INFO] 2021/10/17 19:16 Database connection fine
[INFO] 2021/10/17 19:16 Success - user creation
[INFO] 2621/10/17 19:16 Success - exercise creation
[INFO] 2021/108/17 19:16 Success - updating workout
[INFO] 2021/10/17 19:16 Application complete

I

Figure 2.3 — Log messages inside logs.txt

The logger is configured by the application using the local flag by calling
the SetLoggingoutput(..) function:

func main() {
1l := flag.Bool(«local», false, «true - send to stdout,
false - send to logging server»)
flag.Parse()
logger.SetLoggingOutput(*1)
logger.Logger.Debugf(«Application logging to stdout =
%v», *1)

Two main functions in the wrapper code do most of the wrapping of the
golog framework:

configurelLocal()

configureRemote()

func configureLocal() {
file, err := o0s.0OpenFile(«logs.txt»,
0S.0_APPEND|0s.0_CREATE|0s.0_WRONLY, 0666)

Logger.SetOutput(os.Stdout)
Logger.SetLevel(«debug»)
Logger.SetLevelOutput(«info», file)

}

The configureLocal() function is responsible for configuring logging to
write to both stdout and the configured file named logs. txt. The function
configured golog to set the output to stdout and the level to debug, which
means that everything will be going to stdout.

The other function is configureRemote(), which configures golog to send
all messages to the remote server in JSON format. The SetLeveloutput()
function accepts the io.writer interface, which the sample app has
implemented to send all info log messages:

//configureRemote for remote logger configuration
func configureRemote() {
r := remote{}
Logger.SetLevelFormat («info», «json»)
Logger.SetLevelOutput («info», r)

The write(data []byte) function performs a POST operation, passing the
log message to the logging server:

func (r remote) Write(data []byte) (n int, err error) {
go func() {
req, err := http.NewRequest("POST",
«http://localhost:8010/1og»,
bytes.NewBuffer(data),

.resp, _ := client.Do(req)
defer resp.Body.Close()
}

3(0)

return len(data), nil

}

In this final section, we have learned how to create configurable logging
that will allow applications to log either locally or remotely. This helps our
application to be prepared and deployable in different environments.

Summary

In this chapter, we have looked at different ways of adding log functionality
to applications. We also learned about the golog library, which provides
more flexibility and features than the standard library can offer. We looked
at creating our own simple logging server that enables our application to
send log information that can be used in a multi-service environment.

In the next chapter, we will look at how to add observability functionality to
applications. We will look at tracing and metrics and go through the
OpenTelemetry specification.

Application Metrics and Tracing

In Chapter 2, Application Logging, we looked at logging, and how we use
logging inside our backend Go code. In this chapter, we will proceed to
look at monitoring and tracing. To monitor and trace the application, we
will look into different open source tools and libraries.

We have started building our application, and now we need to start looking
into how we are going to support it. Once an application is running in
production, we need to see what’s happening in the application. Having this
kind of visibility will allow us to understand problems that come up. In
software systems, we will often come across the concept of observability.
The concept refers to the ability of software systems to capture and store
data used for analysis and troubleshooting purposes. This includes the
processes and tools used in order to achieve the goal of allowing users to
observe what’s happening in the system.

In this chapter, we’ll be covering the following topics:

Understanding the OpenTelemetry specification
Tracing applications
Adding metrics to our application using Prometheus

Running docker -compose

Technical requirements

All the source code explained in this chapter is available from GitHub here:
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-
Go/tree/main/Chapter03.

We will be using another tool called OpenTelemetry, which will be
explained in the next section, and the version that we use in this book is

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter03

go/tree/v1.2.0.

Understanding OpenTelemetry

OpenTelemetry is an open source project that enables developers to provide
observability capability to their applications. The project provides a
Software Development Kit (SDK) for different programming languages,
with Go as one of the supported languages, which is integrated with the
application. The SDK is for metric collection and reporting, as it provides
integration with different open source frameworks, making the integration
process seamless. OpenTelemetry also provides a common standard,
providing the application flexibility to report the collected data to different
observability backend systems. OpenTelemetry’s website is at
https://opentelemetry.io/.

N

Open

¢

High-quality, ubiquitous, and portable telemetry to enable effective
observability

Learn more Mission and vision

Get started!

Figure 3.1 — OpenTelemetry logo

https://github.com/open-telemetry/opentelemetry-go/tree/v1.2.0
https://opentelemetry.io/

OpenTelemetry is actually the merging of the OpenTracing and
OpenCensus projects. The project is used to instrument, collect, and export
metrics, logs, and traces. OpenTelemetry can be used across several
languages, and Go is one of the supported languages.

The main benefit of following the OpenTelemetry specification is that it is
vendor-agnostic, which means that applications written using their APIs are
portable across different observability vendors. For example, applications
that are written to write metrics into a filesystem will require a few lines of
code changes to allow it to store metrics in Prometheus, which we will
discuss in the Adding metrics using Prometheus section.

The two main components of OpenTelemetry are the following:

Tracing: This provides applications with the capability to track service
requests as they flow through systems by collecting data. For example,
with the tracing capability, we can see how an HTTP request flows
through the different systems in the network.

Metrics: This provides applications with the ability to collect and store
measurements for detecting performance anomalies and forecasting. For
example, collecting metrics in our application will give us visibility into
how long a database query takes or how long it takes to process a
certain batch job.

You can find the OpenTelemetry specification at the following link:

The specification allows users to plug-and-play different OpenTelemetry
implementations easily without any dependency on single-vendor libraries.
This means that all the relevant contracts that are outlined in the
specification document can be implemented. Some concepts are important
to understand in order to use OpenTelemetry effectively. The following are
the concepts that are relevant to the specification:

Components: These are basically the core vendor-agnostic
specifications, outlining the different parts of the system that need to be

https://opentelemetry.io/docs/reference/specification/

implemented. The components are collectors, the APIs, the SDK, and
instrumenting libraries.

Data sources: This is the data that the specification supports: traces,
logs, metrics, and baggage.

Instrumenting and libraries: There are two ways to integrate the
provided library — either automatically by using the library provided by
the vendor or open source contribution, or manually as per the
application requirements.

In the next section, we are going to look at the implementation side of the
specification, which involves both the APIs and the SDK.

The OpenTelemetry APIs and SDK

OpenTelemetry is made of several components, and two of the main
components that we are going to talk about are the APIs and SDK. The
specification defines cross-language requirements that any implementation
must adhere to as part of the requirements:

The APIs: This defines the data types and operations that will be used
to generate telemetry data

The SDK: This defines the implementation of the APIs for processing
and exporting capabilities

There is a clear distinction between the APIs and SDK — it’s clear that the
APIs are contracts that are provided by the specification, while the SDK
provides the different functionalities required to allow metrics data to be
processed and exported. Metrics data contains information such as memory
used, CPU usage, etc.

The specification provides an API for the following:

Context: This contains the values that are carried around across API
calls. This is data that can be passed between system calls and carry

application information.

Baggage: A set of name-value pairs describing user-defined
properties.

Tracing: An API definition that provides the tracing functionality

Metrics: An API definition that provides the metric recording
functionality

We will look at how the OpenTelemetry tracing API looks and how to add
the tracing capability to applications.

Tracing applications

In the previous chapter, we learned about logging and how logging can give
us visibility into what’s going on inside our application. The line between
logging and tracing is blurry; what we need to understand is that logging
just provides information on what a process is currently doing, while
tracing gives us cross-cutting visibility across different components,
allowing us to get a better understanding of the data flow and time taken for
a process to complete.

For example, with tracing, we can answer questions such as the following:

How long does the add-to-cart process take?

How long does it take to download a payment file?

We will go through the different APIs that are outlined in the specification
and implement those APIs using the implementation provided by the
OpenTelemetry library.

The following figure shows the links between different entities.

TracerProvider

Tracer Span

Figure 3.2 — Tracing an API relationship

TracerProvider is the entry point to use the tracing API and it provides
access to Tracer, which is responsible for creating Span. Span is used to
trace an operation in our application. Before we move further to the next
layer, which is the SDK, we will take a look briefly at Jaeger, which is one
of the support tools provided by the OpenTelemetry library for tracing.

Installing Jaeger

Jaeger (https://www.jaegertracing.io/) is a popular open source distributed
tracing platform; it provides its own client libraries for a wide variety of
programming languages, which can be seen at
https://github.com/orgs/jaegertracing/repositories. We will be running
Jaeger as a Docker container to reduce the amount of setup that is required
when installing the application manually. Let’s start up Jaeger using the
following docker command:

docker run --name jaeger \
-p 5775:5775/udp \
-p 6831:6831/udp \
-p 6832:6832/udp \
-p 5778:5778 \
-p 16686:16686 \
-p 14268:14268 \
-p 14250:14250 \
-p 9411:9411 \
jaegertracing/all-in-one:latest

https://www.jaegertracing.io/
https://github.com/orgs/jaegertracing/repositories

On successful launch, there will be a lot of logs printed that look like the
following:

{"level":"info","ts":1637930923.8576558, "caller":"flags/servi
ce.go:117","msg":"Mounting metrics handler on admin
server","route":"/metrics"}

{"level":"info", "ts":1637930923.857689, "caller":"flags/servic
e.go:123", "msg":"Mounting expvar handler on admin
server","route":"/debug/vars"}

{"level":"info",6 "ts":1637930923.8579082, "caller":"flags/admin
.go:104", "msg" : "Mounting health check on admin

server", "route":"/"}

{"level":"info",6 "ts":1637930923.8579528, "caller":"flags/admin
.go:115", "msg":"Starting admin HTTP server", "http-
addr":":14269"}

{"level":"info",6 "ts":1637930923.8850179, "caller":"app/server.
go:258","msg":"Starting HTTP

server","port":16686, "addr":":16686"}

{"level":"info", "ts":1637930923.8850145, "caller":"healthcheck
/handler.go:129", "msg":"Health Check state

change", "status":"ready"}
{"level":"info","ts":1637930923.8850334, "caller":"app/server.
go:277","msg":"Starting GRPC
server","port":16685, "addr" :":16685"}

{"level":"info", "ts":1637930924.8854718, "caller":"channelz/1o
gging.go:50", "msg":"[core]Subchannel Connectivity change to
IDLE", "system":"grpc", "grpc_log":true}

{"level":"info",6 "ts":1637930924.8855824, "caller":"grpclog/com
ponent.go:71","msg":"[core]pickfirstBalancer:
UpdateSubConnState: 0xc00003af30, {IDLE connection error:
desc = \"transport: Error while dialing dial tcp :16685:
connect: connection

refused\"}", "system":"grpc", "grpc_log":true}
{"level":"info","ts":1637930924.885613, "caller":"channelz/log
ging.go:50", "msg":"[core]Channel Connectivity change to
IDLE", "system":"grpc", "grpc_log":true}

Jaeger is now ready, the tool is not a desktop application but it provides a
user interface that is accessible using the browser. Open your browser and
type in the following URL: http://localhost:16686. It will open the Jaeger
main page (Figure 3.3):

JAEGER UI Search Compare System Architecture Q p by Tr I About Jaeger v

Search JSON File

Service (0)

Select A Service

Operation (0)

all

Tags (?)

Lookback

Last Hour

Max Duration Min Duration

Limit Results

20

Figure 3.3 — Jaeger main page

At the moment, Jaeger does not contain anything, as there are no
applications that are using it.

Integrating the Jaeger SDK

Now that Jaeger is ready, let’s look at how we are going to write tracing
information using OpenTelemetry. The library provides support for the
Jaeger SDK out of the box; this allows applications to use the API to write
tracing to Jaeger.

The example that we will be using in this section is inside the
jaeger/opentelem/trace directory in the chapter’s GitHub repository. The
file that we want to look at is tracing.go as shown here:

package trace
import (
«context»
«go.opentelemetry.io/otel"
«go.opentelemetry.io/otel/exporters/jaeger"
«go.opentelemetry.io/otel/sdk/resource"
«go.opentelemetry.io/otel/sdk/trace"
sc '"go.opentelemetry.io/otel/semconv/v1.4.0"
)
type ShutdownTracing func(ctx context.Context) error
func InitTracing(service string) (ShutdownTracing, error)
{
// Create the Jaeger exporter.
exp, err := jaeger.New(jaeger.WithCollectorEndpoint())
if err != nil {
return func(ctx context.Context) error { return nil },
err
b
// Create the TracerProvider.
tp := trace.NewTracerProvider(
trace.withBatcher(exp),
trace.wWithResource(resource.NewWithAttributes(
sc.SchemaURL,
sc.ServiceNameKey.String(service),

)),
)

otel.SetTracerProvider(tp)
return tp.Shutdown, nil

Let’s take a look at what each part of the code is doing. Line 18 is
initializing the Jaeger SDK inside the OpenTelemetry library. On

successfully initializing the Jaeger SDK, the code continues to provide the
newly created Jaeger and uses it with the OpenTelemetry library to create a

new TracerProvider API. As discussed in the previous section,
TracerProvider is the API that is used as the main entry for
OpenTelemetry. This is performed on lines 24-30.

On obtaining TracerProvider, we will need to call the global

SetTracerProvider to let OpenTelemetry know about it, which is done on
line 32. Once the Jaeger SDK has been successfully initialized, now it’s a

matter of using it in the application.

Let’s take a look at the code sample for using the tracing functionality. The
sample application that we are going to look at can be found inside the
jaeger/opentelem directory inside main.go.

Integration with Jaeger

We are going to go through section by section to explain what the code is
doing. The following code section shows the InitTracing function that
takes care the initialization process being called:

package main
import (

t "chapter.3/trace/trace"

"context"

llfmt n

"go.opentelemetry.io/otel"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/trace"

lllogll
"SynC"
"time"
) |
const serviceName = "tracing"
func main() {
sTracing, err := t.InitTracing(serviceName)
if err != nil {

log.Fatalf("Failed to setup tracing: %v\n", err)

b
defer func() {

if err := sTracing(context.Background()); err != nil
{
log.Printf("Failed to shutdown tracing: %v\n", err)
b
1) _
ctx, span := otel.Tracer(serviceName)

.Start(context.Background(), "outside")
defer span.End()
var wg sync.WaitGroup
wg.Add(1)
go func() {
_, S := otel.Tracer(serviceName).Start(ctx, "inside")

Qé:Done()

30)

wg.Add(1)

go func() {
_, Ss := otel.Tracer(serviceName).Start(ctx,
"inside")
wg.Done()
+(0)
wg.Wait()

fmt.Println("\nDone!")

Once the SDK completes the initialization process, the code can start using
the API to write tracing information and this is done by getting a Span using
the Tracer API as shown on lines 27-29. The code uses sync.wWaitGroup
(lines 35 and 45) to ensure that the main thread does not finish before the
goroutine completes — the goroutine is added to simulate some kind of
processing to be done to generate a trace that will be reported to Jaeger.

The Tracer API only has one Start function, which is called to initiate the
tracing operation, and the tracing operation is considered complete when
the End function is called on Span — so, what is Span? Span is an API for
tracing an operation; it has the following interface declaration:

type Span interface {
End(options ...SpanEndOption)

AddEvent (name string, options ...EventOption)
IsRecording() bool
RecordError(err error, options ...EventOption)

SpanContext() SpanContext

SetStatus(code codes.Code, description string)
SetName(name string)

SetAttributes(kv ...attribute.KeyValue)
TracerProvider() TracerProvider

Multiple spans are pieced together to create a trace; it can be thought of as a
Directed Acyclic Graph (DAG) of spans.

DAGs

A DAG is a term used in mathematics and computer science. It is a graph
that shows dependencies, which, in our case, are the dependencies of
application traces.

Figure 3.4 shows what the composition of the trace looks like:

[Span Parent] «e<(the root span)

I

+------ +------ +

I I
[Span C1] [Span C3] «««(Span C3 is a "child’ of Span Parent)
I I

[Span v2] F---fommnnan +

I I
[Span C3-1] [Span C3-2]|

Figure 3.4 — A DAG of a simple trace

The sample code creates two goroutines to perform a sleep operation and
write trace information as shown below:

go func() {
_, S := otel.Tracer(serviceName).Start(ctx, "inside")
defer s.End()
time.Sleep(1 * time.Second)
s.SetAttributes(attribute.String("sleep", "done"))
s.SetAttributes(attribute.String("go func", "1"))
wg.Done()

3(0)

go func() {
_, SS := otel.Tracer(serviceName).Start(ctx, "inside")
defer ss.End()
time.Sleep(2 * time.Second)
ss.SetAttributes(attribute.String("sleep", "done"))
ss.SetAttributes(attribute.String("go func", "2"))
wg .Done()

30)

Run the complete sample application in main.go inside the
jaeger/opentelem directory using the following command:

go run main.go

Upon completion, the application will write tracing information into Jaeger.
Open Jaeger by accessing http://localhost:16686 in your browser. Once it’s

opened, you will see a new entry under the Service dropdown as shown in
Figure 3.5:

JAEGER UI Search Compare System Architecture

Search JSON File

Service (2)

fracing

jaeger-query

a

Tags @

Lookback

Last Hour

Max Duration Min Duration

Limit Results

20

<>

Figure 3.5 — Application trace search

The sample application tracing information is registered with the same
string defined in the code, which is called tracing:

const serviceName = "tracing"

Clicking on the Find Traces button will read the trace information that is
stored (Figure 3.6):

Search JSON File

Service (2)

racing coms

0000ys.

Operation (2) 081370 am 100000 am

all

1 Trace Sort:| Most Recent Deep Dependency Graph

Tags®

Compare traces by selecting result items.
Lookback

Last Hour
tracing: outside 211m0s

35pans W tracing)

Today 10:41:44 pm

Limit Results.

20

Figure 3.6 — Application traces

As can be seen in Figure 3.6, there is only one entry and if you click on it, it
will expand more information that the app has submitted via the Span API.

W & 12 2z
(= I]]
1 I
f T

Service & Operation v > % » ops 500.05ms

o | tacing e

| vacing insioe

| vacing insice

Figure 3.7 — Tracing information

Figure 3.7 shows the complete tracing information, which is a composition
of spans from the application. Clicking on each of the graphs will bring up
more information included in the span, which is included as shown in the
code here:

go func() {

s.SetAttributes(attribute.String("sleep", "done"))
s.SetAttributes(attribute.String("go func", "1"))

Y
go func() {

ss.SetAttributes(attribute.String("sleep", "done"))
ss.SetAttributes(attribute.String("go func", "2"))

30

Now that we know how to add tracing to our application, in the next
section, we will look at adding metric instrumentation that will give us
visibility into some of the performance metrics relevant to our application.

Adding metrics using Prometheus

As OpenTelemetry is vendor-agnostic, it provides a wide variety of support
for monitoring, exporting, and collecting metrics and one option is
Prometheus. A complete list of different projects supported by

Prometheus is an open source monitoring and alerting system server that is
widely used in cloud environments; it also provides libraries for a variety of
programming languages.

In the previous section, we saw how to add tracing capabilities to our
application and how to retrieve the traces by using Jaeger. In this section,
we are going to take a look at how to create metrics using the
OpenTelemetry library. Metrics allow us to get instrumentation information
for our applications; it can provide answers to questions such as the
following:

https://opentelemetry.io/registry/

® What is the total number of requests processed in service A?

e How many total transactions are processed via payment gateway B?

Normally, collected metrics are stored for a certain amount of time to give
us better insights into how the applications are performing by looking at a

specific metric.

We will use the Prometheus open source project (https://prometheus.io/),
which provides a complete monitoring solution stack and is very easy to
use. The project provides a lot of features that are useful for collecting and
storing metrics and monitoring our applications.

From metrics to insight

Power your metrics and alerting with the leading
open-source monitoring solution.

A Dimensional data

Prometheus implements a highly
dimensional data model. Time series
are identified by a metricname and a

set of key-value pairs.

£+ Simple operation

Each server is independent for
reliability, relying only on local storage.,
Written in Go, all binaries are statically
linked and easy to deploy.

GET STARTED

Q. Powerful queries

PromQL allows slicing and dicing of
collected time series data in order to
generate ad-hoc graphs, tables, and

alerts.

A Precise alerting

Alerts are defined based on
Prometheus's flexible PromQL and
maintain dimensional information. An
alertmanager handles notifications

and silencing.

DOWNLOAD

|+ Great visualization

Prometheus has multiple modes for
visualizing data: a built-in expression
browser, Grafana integration,and a

conscle template language.

</> Many client libraries

Client libraries allow easy
instrumentation of services. Over ten
languages are supported aiready and
custom libraries are easy to

implement.

Figure 3.8 — The Prometheus monitoring stack

£ Efficient storage

Prometheus stores time series in
memory and on local disk inan
efficient custom format. Scaling is
achieved by functional sharding and

federation.

& Many integrations

Existing exporters allow bridging of
third-party data into Prometheus,
Examples: system statistics, as well as
Daocker, HAProxy, StatsD, and JMX
metrics.

Similar to tracing, the OpenTelemetry specification specifies the API and
SDK for metrics, as shown in Figure 3.9.

https://prometheus.io/

MeterProvider

h

Meter Instrument

Figure 3.9 — Metrics API

The following are explanations of the metrics APIs:

MeterProvider: This is an API for providing access to meters.

Meter: This is responsible for creating instruments, and is unique to
the instrumentation in question.

Instrument: This contains the metric that we want to report; it can be
synchronous or asynchronous.

Adding metrics using Prometheus

Let’s start up Prometheus; make sure from your terminal that you are inside
the chapter3/prom/opentelem directory and execute the following docker
command:

docker run --name prom \
-v $PWD/config.yml:/etc/prometheus/prometheus.yml \
-p 9090:9090 prom/prometheus:latest

NOTE:

If you are using a Linux machine, use the following command:

docker run --name prom \

-v $PWD/config.yml:/etc/prometheus/prometheus.yml\

-p 9090:9090 --add-host=host.docker.internal:host-gateway
prom/prometheus:latest

The extra parameter, - -add-host=host.docker.internal:host-gateway,
will allow Prometheus to access the host machine using the
host.docker.internal machine name.

The config.yml file used for configuring Prometheus is inside the
prom/opentelem directory and looks like the following:

scrape_configs:

- job_name: 'prometheus'
scrape_interval: 5s
static_configs:

- targets:
- host.docker.internal:2112

We will not go through the different available Prometheus configuration
options in this section. The configuration we are using informs Prometheus
that we want to get metrics from the container host, which is known
internally in the container as host .docker.internal, at port 2112, at an
interval of 5 seconds.

Once Prometheus successfully runs, you will see the following log:

ts=2021-11-30T11:13:56.688Z caller=main.go:451 level=info
fd_limits="(soft=1048576, hard=1048576)"

£s=2021-11-30T11:13:56.694Z caller=main.go:996 level=info
msg="Loading configuration file"
filename=/etc/prometheus/prometheus.yml
ts=2021-11-30T11:13:56.694Z caller=main.go:1033 level=info
msg="Completed loading of configuration file"
filename=/etc/prometheus/prometheus.yml
totalDuration=282.112pys db_storage=537ns
remote_storage=909ns web_handler=167ns query_engine=888ns
scrape=126.942us scrape_sd=14.003us notify=608ns
notify_sd=1.207pys rules=862ns

ts=2021-11-30T11:13:56.694Z caller=main.go:811 level=info
msg="Server 1s ready to receive web requests."

Next, open your browser and type in the following: http://localhost:9090.
You will be shown the main Prometheus UI:

Prometheus Alerts Graph Status~ Help Classic Ul

Use local time () Enable query history Enable autocomplete Enable highlighting () Enable linter

Q, | Expression (press Shift+Enter for newlines) (3]

Table Graph

Evaluation time

No data queried yet

Remove Panel

Add Panel

Figure 3.10 — The Prometheus Ul

Figure 3.11 shows the way Prometheus collects metrics via a pulling
mechanism where it pulls metric information from your application by
connecting to port 2112, which is exposed by the HTTP server running in
the application. We will see later that most of the heavy lifting is done by
the openTelemetry library; our application will just have to provide the
metric that we want to report on.

2Nz

Application Prometheus

Figure 3.11 — Prometheus metric collection

Now that Prometheus is ready, we can start recording metrics to for our
application. Run the application inside the prom/opentelem directory as
follows:

go run main.go

Let the application run for a bit and you will see the following log:

2021/11/30 22:42:08 Starting up server on port 8000
2021/11/30 22:42:12 Reporting metric metric.random
2021/11/30 22:42:22 Reporting metric metric.random
2021/11/30 22:42:32 Reporting metric metric.random
2021/11/30 22:42:47 Reporting metric metric.random
2021/11/30 22:42:57 Reporting metric metric.random

metric.totalrequest: This metric reports the total number of
requests processed by the application; the sample application has an
HTTP server running on port 8000

metric.random: This metric reports a random number

With the successful run of the sample application, we can now see the
metric in the Prometheus Ul. Open your browser and head to
http://localhost:9090 and type in metric_random and you will see
something such as that shown in Figure 3.12; click on the Execute button.

Q. metric random
& metric_random gauge Random numbers

Table Graph

Figure 3.12 — metric_random metric

Select the Graph tab and you will see the following figure:

Prometheus Alerts Graph Status~ Help ClassicU

Use local time Enable query history Enable autocomplete Enable highlighting Enable linter

Q metric_randon e B

Table Graph

a- o off] | e

25000]

metrc_random{instance="127.0.0.1:2112", job="prometheus”, service_name="samplemetrics’)

Figure 3.13 — metric_random graph

The other metric that we want to show is the total number of requests
processed by the sample application’s HTTP server. In order to generate
some metrics, open the browser and enter http://localhost:8000; do so a few
times so that some metrics will be generated.

Open the Prometheus UI again (http://localhost:9090), add the
metric_totalrequest metric as shown in Figure 3.14, and click on
Execute:

@ metric_random

uge
Tab[e® metric_total request Load time: 16ms Resolution: 14s Result series: 1
© histogram_quantile(__quantile__, sum by(le) (rate(__histogram metric__[5m]))) snippet
= © scrape_samples_post_metric_relabeling
I . | & |

Figure 3.14 — metric_totalrequest metric

The graph will look as follows:

Prometheus Alerts Graph Status~ Help Classic

Use local time () Enable query history Enable autocomplete Enable highlighting Enable linter

Q metric_totalrequest (2]
Loasume:26ms Resohon: s Resut seres: 1

Table Graph

- sm End time m Res. (s)

1500

1250

281500 204530 231600 281630 284700 284730 20600 23183 281960 25100

metic_totarequest{instance="127.0.0,1:2112", job="prometheus”, service_name="samplemetrics}

Figure 3.15 — metric_totalrequest graph

If you are having problems and cannot see the metrics, change the
Prometheus configuration file, config.yml, inside the
chapter3/prom/opentelem directory and change the target from
host.docker.internal to localhost as shown here:

scrape_configs:

- job_name: 'prometheus'
scrape_interval: 5s
static_configs:

- targets:
- localhost:2112

The metrics.go source contains the code that initializes the otel SDK to
configure it for Prometheus, which is shown in the code snippet here:

package metric

type ShutdownMetrics func(ctx context.Context) error
// InitMetrics use Prometheus exporter
func InitMetrics(service string) (ShutdownMetrics, error) {
config := prometheus.Config{}
c := controller.New(
processor .NewFactory(
selector.NewwithExactDistribution(),
aggregation.CumulativeTemporalitySelector(),
processor.WithMemory(true),

)

controller.WithResource(resource.NewwWithAttributes(
semconv.SchemaURL,
semconv.ServiceNameKey.String(service),

),
)

exporter, err := prometheus.New(config, c)
if err != nil {
return func(ctx context.Context) error { return nil},
err

global.SetMeterProvider (exporter.MeterProvider())
srv := &http.Server{Addr: ":2112", Handler: exporter}
go func() {
_ = srv.ListenAndServe()
+0)

return srv.Shutdown, nil

The following code snippet shows how it sends the metrics to Prometheus —
the code can be found in main.go inside the chapter3/prom/opentelem
directory:

package main

const serviceName = "samplemetrics"
func main() {

//setup handler for rgeuest
r.HandleFunc("/", func(rw http.ResponseWriter, r
*http.Request) {
log.Println("Reporting metric metric.totalrequest")
ctx := r.Context()
//add request metric counter
ctr.Add(ctx, 1)

1) .Methods ("GET")

Now that we have successfully added metrics and tracing to our
applications and can view them using both Jaeger and Prometheus; in the
next section, we will look at putting all the tools together to make it easy to
run them as a single unit.

Running docker-compose

We normally run containers using the docker command, but what if we
want to run more than one container in one go? This is where docker -
compose comes to the rescue. The tool allows you to configure the different
containers that you want to run as a single unit. It also allows different
kinds of configurations for different containers — for example, container A
can communicate via the network with container B but not with container
C.

The docker -compose tool that we are using in this book is v2, which is the
recommended version. You can find instructions for installing the tool for
different operating systems here —
https://docs.docker.com/compose/install/other/.

To make it easy to run both Prometheus and Jaeger, you can use docker -
compose. The docker -compose.yml file looks as follows:

version: '3.3'
services:
jaeger:
image: jaegertracing/all-in-one:latest
ports:
- '"6831:6831/udp"
- "16686:16686"
- "14268:14268"
prometheus:
image: prom/prometheus:latest
volumes:
-./prom/opentelem/config.yml:/etc/prometheus/
prometheus.yml
command:
- '--config.file=/etc/prometheus/prometheus.yml’
- '--web.console.libraries=/usr/share/prometheus/
console_libraries'
- '--web.console.templates=/usr/share/prometheus/
consoles»
ports:
- 9090:9090
network_mode: "host"

https://docs.docker.com/compose/install/other/

Run docker -compose using the following command:

docker-compose -f docker-compose.yml up

On a successful run, you will see the following log:

prometheus_1 | ts=2021-12-04T07:45:02.443Z
caller=main.go:406 level=info msg="No time or size retention
was set so using the default time retention" duration=15d
prometheus_1 | ts=2021-12-04T07:45:02.443Z
caller=main.go:444 level=info msg="Starting Prometheus"
version="(version=2.31.1, branch=HEAD,
revision=411021ada9ab41095923b8d2df9365b632fd40c3)"
prometheus_1 | ts=2021-12-04T07:45:02.443Z
caller=main.go:449 level=info build_context="(go=gol1l.17.3,
user=root@9419c9c2d4e0, date=20211105-20:35:02)"
prometheus_1 | ts=2021-12-04T07:45:02.443Z
caller=main.go:450 level=info host_details="(Linux 5.3.0-22-
generic #24+system76~1573659475~19.10~26b2022-Ubuntu SMP Wed
Nov 13 20:0 x86_64 pop-o0s (none))"

prometheus_1 | ts=2021-12-04T07:45:02.444Z
caller=main.go:451 level=info fd_limits="(soft=1048576,
hard=1048576)"

prometheus_1 | ts=2021-12-04T07:45:02.444Z
caller=main.go:452 level=info vm_limits="(soft=unlimited,
hard=unlimited)"

jaeger_1 | 2021/12/04 07:45:02 maxprocs: Leaving
GOMAXPROCS=12: CPU quota undefined

prometheus_1 | ts=2021-12-04T07:45:02.445Z
caller=web.go:542 level=info component=web msg="Start
listening for connections" address=0.0.0.0:9090

jaeger_1 |

{"level":"info", "ts":1638603902.657881, "caller":"healthcheck/
handler.go:129", "msg":"Health Check state

change", "status":"ready"}

jaeger_1

{"level":"info", "ts":1638603902.657897, "caller":"app/server.g
0:277","msg":"Starting GRPC
server","port":16685, "addr" :":16685"}

jaeger_1 |

{"level":"info", "ts":1638603902.6579142, "caller":"app/server.

go:258","msg":"Starting HTTP
server","port":16686, "addr":":16686"}

The up parameter we are using will start the container in the terminal and
run in attached mode, which allows you to show all the logs on the screen.
You also can run in detached mode to run the container in the background
as follows:

docker-compose -f docker-compose.yml up -d

Summary

In this section, we looked at how to add metrics and tracing into an
application using the openTelemetry library. Having this observability in an
application will enable us to troubleshoot issues faster and also keep track
of the performance of our application from the provided metrics. We also
took a look at using two different open source projects that allow us to look
at the data collected from our application.

In this chapter, we looked at the plumbing and infrastructure required to
monitor and trace our application. In the next chapter, we will look at
different aspects of building both dynamic and static content for our web
application and how to package the application to make it easier to deploy
anywhere.

Part 2:Serving Web Content

Upon completing this part of the book, you will be able to create server-

rendered pages using an HTML/template and Gorilla Mux. You will also
learn how to create and expose an API that will be used by the frontend.

Securing the API will be discussed, including middleware.

This part includes the following chapters:

Chapter 4, Serving and Embedding HTML Content
Chapter 5, Securing the Backend and Middleware

Chapter 6, Moving to API-First

Serving and Embedding HITML
Content

As we build on our foundations, it is important that we look at another
aspect of processing HTTP user requests, routing. Routing is useful as it
allows us to structure our application to handle different functionality for
certain HTTP methods, such as a GET that can retrieve and a POST on the
same route that can replace the data. This concept is the fundamental
principle of designing a REST-based application. We’ll end the chapter by
looking at how we can use the new embed directive introduced in Go
version 1.16 to bundle our web app as a single self-contained executable.
This chapter will provide us with the tools to handle user data and create the
interface for the user.

By the end of this chapter, you will have learned how static and dynamic
content is served by the application. You will also have learned how to
embed all the different assets (icons, .html, .css, etc.) that will be served
by the web application in the application using a single binary. In this
chapter, we’ll cover the following topics:

Handling HTTP functions and Gorilla Mux
Rendering static and dynamic content

Using Go embed to bundle your content

Technical requirements

All the source code for this chapter can be accessed at
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-
Go/tree/main/Chapter04.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter04

Handling HTTP functions and
Gorilla Mux

When we look at the Go standard library, we can see that a lot of thought
has gone into the HTTP library. You can check out the documentation for
the Go standard library here: https://pkg.go.dev/net/http. However, we’ll
cover the foundations and look at how we can build upon them. It’s
interesting to Note that the Go standard library covers both client- and
server-side implementations. We will only be focusing on the parts we
require to serve content.

We will create a simple app that replies with Hello, World, as well as look
at returning POST data once we have expanded our routes.

Hello, World with defaults

The basic concepts of creating a server in Golang are as follows:

1 package main

2

3 import (

4 llfmtll

5 lllogll

6 "net/http"

7 "OS"

8 "time"

9)
10
11 func handlerGetHelloWorld(wr http.ResponseWriter,

req *http.Request) {

12 fmt.Fprintf(wr, "Hello, World\n")
13 log.Println(req.Method) // request method
14 log.Println(req.URL) // request URL
15 log.Println(req.Header) // request headers
16 log.Println(req.Body) // request body)
17 }
18

N
©

https://pkg.go.dev/net/http

30 func main() {

43 router := http.NewServeMux()

44

45 srv := http.Server{

46 Addr: ":" + port,

47 Handler: router,

48 ReadTimeout: 10 * time.Second,

49 WriteTimeout: 120 * time.Second,

50 MaxHeaderBytes: 1 << 20,

51 }

52

57 router.HandleFunc("/", handlerGetHelloWorld)

58 router.Handle("/1", dummyHandler)

59 err := srv.ListenAndServe()

60 if err !'= nil {

61 log.Fatalln("Couldnt ListenAndServe()",
err)

62 3}

63 }

You can see this code in the Git repository under the 1ibrary-mux sub-
folder.

How this works is we define a handlerGetHellowor1d handler function
(row 11) that is passed as a parameter to the router.HandleFunc function.
The HandleFunc parameter requires a function parameter that has the
following signature: func(ResponseWriter, *Request).

The handler’s job is to take in a request type and a ResponseWriter and
make a decision based on the request; that is, what to write to
ResponseWriter. In our case, the handlerGetHelloworld handler will send
the Hello, World string as a response, using the fmt.Fprintf(...)
function. The reason why it is possible for the response to be sent back is
that the http.ResponseWriter implements the write() function, which is
used inside the fmt.Fprintf(...) function.

We now define the following steps for the main function:

1. First, we create a router: this is what our handlers will connect to. We
create our own router with NewServeMux (line 43). We could use the

DefaultServeMux found in the default library, but as you will see at
5f£9 1b66/src/exp$/e-xpﬂ go#[.334, it contains a few additional
debugging endpoints that we may not want to expose publicly. By
registering our own, we gain more control and can add the same
endpoints ourselves if we want them.

Second, we create an instance of our server and bind it to an available
port. The Addr field on the server specifies the address and port to
bind to. In our example, we are using 9002. Different operating
systems have different restrictions on what port can be used. For
example, Linux systems only allow the admin or root user to run
applications that use ports between 1 and 1023.

The final step is to attach our router, start the server, and get it to
begin listening. This is accomplished in line 57. What we’re doing
here is telling the router that when it gets any HTTP request for "/",
known as the document root, it should handle the request by passing
it to our handler.

The final function, srv.ListenAndServe() (line 59), is a blocking
function that starts our server up and starts listening for incoming
requests on the server’s defined port. When a valid HTTP request is
found, it is passed to the mux, which then pattern matches the route —
that is, the given sequence is checked against the patterns known by
the mux, and if a pattern is found for "/", then our handler is
invoked. We can run our app and visit http://localhost:9002/; we
should be met with the following response from the server:

https://github.com/golang/go/blob/5ec87ba554c2a83cdc188724f815e53fede91b66/src/expvar/expvar.go#L334

oo @MU @D wew o

Hello, World

—
Figure 4.1 — Hello, World from Go!

It’s good to note here that each request is given its own goroutine to execute
concurrently, and each request’s life cycle is managed by the server so we
don’t need to do anything explicitly to leverage this.

In the next section, we will explore building different functionalities using
Gorilla Mux. In particular, we will look at implementing handlers and the
different ways to handle HTTP methods, such as GET and POST.

Building on the basics with Gorilla
Mux

Gorilla Mux, accessible at https://github.com/gorilla/mux, is a subproject of
the Gorilla project. Gorilla Mux is an HTTP request multiplexer that
makes it easy to match different handlers with matching incoming requests.
Developers gain a lot of benefits from using the library, as it makes writing
lots of boilerplate code unnecessary. The library provides advanced
capabilities to match requests based on different criteria, such as schemes
and dynamic URLs.

https://github.com/gorilla/mux

The server and router provided as part of Go’s standard library are
incredibly powerful for “freebies”, but we’re going to look at adding
Gorilla Mux to our project and some of the benefits it provides.

Uses of the web consist of more than just returning Hello World, and
generally, most web apps accept data provided by users, update the data,
and even delete the data, and this is possible because the browser accepts a
variety of content such as images, video, data fields, and plain text. The
previous exercise focused on what is known as a GET method, which is the
default sent when you load a page in your web browser, but there are many
more.

The standard library implementation makes it easy to explicitly handle
other types of methods, such as GET, POST, PUT, DELETE, and more, which
are defined in the HTTP standard. This is typically done in the handler
function as we can see below:

func methodFunc(wr http.ResponseWriter, req http.Request) {

switch req.Method {
case http.MethodGet:
// Serve page - GET is the default when you visit a
// site.
case http.MethodPost:
// Take user provided data and create a record.
case http.MethodPut:
// Update an existing record.
case http.MethodDelete:
// Remove the record.
default:
http.Error(wr, "Unsupported Method!",
http.StatusMethodNotAllowed)

Let’s look at an example of how we can separate two handlers, GET and
POST, and some of the helpers provided by Gorilla Mux:

1 package main

3 import (

24

25

26

27

28

29
30
31
32

33

34

35
36
37
38
39
40
41

)

llbytesll
llfmt n

llioll
"io/ioutil"
lllogll
"net/http"
"OS"

"github.com/gorilla/mux"

func handlerSlug(wr http.ResponseWriter, req

}

*http.Request) {
slug := mux.Vars(req)["slug"]

if slug == "" {
log.Println("Slug not provided")
return

}

log.Println("Got slug", slug)

func handlerGetHellowWorld(wr http.ResponseWriter,

}

req *http.Request) {
fmt.Fprintf(wr, "Hello, World\n")
// request method
log.Println("Request via", req.Method)
// request URL
log.Println(req.URL)
// request headers
log.Println(req.Header)
// request body)
log.Println(req.Body)

func handlerPostEcho(wr http.ResponseWriter,

req *http.Request) {
// request method
log.Println("Request via", req.Method)
// request URL
log.Println(req.URL)
// request headers
log.Println(req.Header)

// We are going to read it into a buffer
// as the request body is an io.ReadCloser
// and so we should only read it once.
body, err := ioutil.ReadAll(req.Body)

42
43
a4
45
46

47
48
49
50
51
5
53

54
55
56
57

58
59
60
61
62
63

64

65

66
67
68
69
70

71
72
73
74

75

76

}

log.Println("read >", string(body), "<")

n, err := io.Copy(wr, bytes.NewReader (body))
if err != nil {
log.Println("Error echoing response",
err)

}
log.Println("Wrote back", n, "bytes")

func main() {

// Set some flags for easy debugging
log.SetFlags(log.Lshortfile | log.Ldate |
log.Lmicroseconds)

// Get a port from ENV var or default to 9002
port := "9002"
if value, exists :=
0S.LookupEnv("SERVER_PORT"); exists {
port = value
}

// Off the bat, we can enforce StrictSlash
// This is a nice helper function that means
// When true, if the route path is "/foo/",
// accessing "/foo" will perform a 301

// redirect to the former and vice versa.
// In other words, your application will
// always see the path as specified in the
// route.

// When false, if the route path is "/foo",
// accessing "/foo/" will not match this
// route and vice versa.

router := mux.NewRouter().StrictSlash(true)

srv := http.Server{
Addr: ":" + port, // Addr optionally
// specifies the listen address for the
// server in the form of "host:port".
Handler: router,

}

router.HandleFunc("/", handlerGetHellowWorld)
.Methods(http.MethodGet)

router.HandleFunc("/", handlerPostEcho)
.Methods(http.MethodPost)

router.HandleFunc("/{slug}", handlerSlug)

.Methods(http.MethodGet)

77

78 log.Println("Starting on", port)

79 err := srv.ListenAndServe()

80 if err !'= nil {

81 log.Fatalln("Couldnt ListenAndServe()",
err)

82 3}

83 }

We’ve imported the Gorilla Mux library as mux and set up two different
handlers: handlerGetHelloworld (line 24) and handlerPostEcho (line 32).
handlerGetHelloWorld is the same handler we defined in the previous
example that responds with Hello, World. Here, thanks to the extended
functionality of the router, we’ve specified explicitly that the handler can
only resolve if the user performs a GET method on the "/" endpoint (line
74).

Let’s start the sample by first changing to the chapter4/gorilla-mux
directory and running the following command:

go run main.go

We can use cURL, which is a standard utility available on Windows (use
cmd instead of PowerShell) and installed by default on Linux (depending
on your Linux distribution) and macOS. The tool allows users to make
HTTP requests from a terminal without using a browser. Use the curl
localhost:9002 command in a separate terminal to test whether the server
is up and running:

$ curl localhost:9002

Hello, World

$ # Specify DELETE as the option...
$ curl localhost:9002 -v -X DELETE

We can see that GET works as expected but using -x DELETE to tell cURL to
use the HTTP DELETE method results in no content being returned. Under
the hood, the endpoint is responding with a 465 Method Not Allowed error

message. The 405 error message reported to the user comes from the library
by default.

We’ve added a second handler (line 75) to take data from a POST request.
The handler for the POST method, handlerPostEcho (line 32), performs in a
similar manner to the GET request, but we’ve added some additional code to
read the user-provided data, store it, print it, and then return it unaltered.

We can see how this works using cURL as before:

$ curl -X POST localhost:9002 -d "Echo this back"
Echo this back

We’re skipping a lot of validation and explicitly checking/handling data
formats, such as JSON, at this point, but we’ll build towards this in later
sections.

Another benefit of using Gorilla Mux is how easy it makes pattern
matching in paths. These path variables, or s1lugs, are defined using the
{name} format or {name:pattern}. The following table shows different
slugs with examples:

/books/mytitle/page/1,

/books/{pagetitle}/page/{pageno
{pag }/page/{pag } /books/anothertitle/page/100

/posts/titlepage
/posts/{slug}
/posts/anothertitle

Pattern can be a type of regular expression. For example, in our sample

code we added a handlerslug handler (line 15) to perform a simple

capture. We can use cURL to test this, as shown in the following code:
$ curl localhost:9002/full-stack-go

$ # Our server will show the captured variable in its output

2022/01/15 14:58:36.171821 main.go:21: Got slug > full-stack-
go <

In this section, we have learned how to write handlers and use them with
Gorilla Mux. We have also looked at configuring Gorilla Mux to handle
dynamic paths that will be processed by handlers. In the next section, we
will look at serving content to users from our application. The served
content will contain static and dynamic content.

Rendering static content

In this section, we will learn how to serve the web pages we have created as
static content. We will use the standard Go net/http package to serve up
the web pages. All the code and HTML files can be found inside the
static/web directory (https://github.com/PacktPublishing/Full-Stack-Web-
Development-with-Go/tree/main/ChapterQ4/static/web).

Execute the server using the following command:

go run main.go

You will see the following message on the screen:

2022/01/11 22:22:03 Starting up server on port 3333 ...

Open your browser and enter http://localhost:3333 as the URL. You
will see the login page, as shown in Figure 4.2:

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter04/static/web

localhost:3333 o

FullyStacked &

Login to your account

Email Address

Password S

Figure 4.2 — The login page

To access the dashboard page, you can use the URL
http://localhost:3333/dashboard.html. You will see like the following
screenshot:

localhost:3333/dashboard.html

FullyStacked & StartWorkout |

Today's Workout

Bench Press

Bench Press

Bench Press

Workout on 2/1/2021

Bench Press

Bench Press

Bench Press

No More Workouts

Figure 4.3 — The dashboard page

Let’s take a quick look at the code that serves up the static pages:

1 package main

2

3 import (

4 lllogll

5 "net/http"

6)

-

8 func main() {

9 fs := http.FileServer(http.Dir("./static"))
10 http.Handle("/", fs)
11

12 log.Println("Starting up server on port 3333

---Il)
13 err := http.ListenAndServe(":3333", nil)

14 if err != nil {

15 log.Fatal("error occurred starting up
server : ", err)

16 3

17 }

As can be seen, this is a simple HTTP server that uses the
http.FileServer(..) Go standard library function (shown in line 9). The
function is called by passing in the (./static) parameter to the directory
that we want to serve (line 9). The example code can be found inside the
chapter4/static/web/static folder.

Rendering dynamic content

Now that we understand how to serve static content using the net/http
package, let’s take a look at adding some dynamic content using Gorilla
Mux found here: https:/github.com/PacktPublishing/Full-Stack-Web-
Development-with-Go/tree/main/ChapterO4/dynamic. Execute the server
using the following command:

go run main.go

Launch your browser and enter http://localhost:3333 as the address;
you will see a login screen similar to the static content. Perform the
following steps on the login screen:

1. Enter any combination of username and password on the login
screen.

2. Click the Login button.

You will get a Login unsuccessful message, as shown in Figure 4.4.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter04/dynamic

FullyStacked g

Login unsuccessful

Figure 4.4 — Message screen after login

We have introduced dynamic content for our login operation, which means
the application will serve pages based on certain conditions, in this case, the
successful validation of the username/password combination. To achieve a
successful validation, enter admin/admin as the username/password
combination, as this exists in the database.

Let’s explore the code a bit further to understand how it works:

1 package main

2

3 import (

4 llfmtll

5 "github.com/gorilla/mux"
6 "html/template"

7 lllogll

8 "net/http"

9 IIOSII

10 "path/filepath"

11 "time"

12)

13

14 type staticHandler struct {
15 staticPath string

16 indexPage string

17 }

18

19 func (h staticHandler) ServeHTTP(w
http.ResponseWriter, r *http.Request) {

20 path, err := filepath.Abs(r.URL.Path)

21 log.Println(r.URL.Path)

22 if err !'= nil {

23 http.Error(w, err.Error(),

http.StatusBadRequest)

24 return

25 }

26

27 path = filepath.Join(h.staticPath, path)

28

29 _, err = os.Stat(path)

30

31 http.FileServer(
http.Dir(h.staticPath)).ServeHTTP(w, r)

32 }

33

34 func postHandler(w http.ResponseWriter,
r *http.Request) {

35 result := "Login "
36 r.ParseForm()
37
38 if validateUser(r.Formvalue("username"),
r.FormValue("password")) {
39 result = result + "successfull"
40 } else {
41 result = result + "unsuccessful"
42 }
43
44 t, err :=
template.ParseFiles("static/tmpl/msg.html")
45
46 if err !'= nil {
47 fmt.Fprintf(w, "error processing")
48 return
49 }
50
51 tpl := template.Must(t, err)
52
53 tpl.Execute(w, result)
54 }
55
56 func validateUser (username string,
password string) bool {
57 return (username == "admin") &&
(password == "admin")

58 }

59
60 func main() {

61 router := mux.NewRouter ()

62

63 router.HandleFunc("/login",
postHandler).Methods("POST")

64

65 spa := staticHandler{staticPath: "static",

indexPage: "index.html"}

66 router.PathPrefix("/").Handler (spa)

67

68 srv := &http.Server{

69 Handler: router,

70 Addr: "127.0.0.1:3333",

71 WriteTimeout: 15 * time.Second,

72 ReadTimeout: 15 * time.Second,

73 }

74

75 log.Fatal(srv.ListenAndServe())

76 }

The ServeHTTP function (line 19) serves the content specified by the
directory defined in the staticHandler struct (line 65), which points to the
static directory with the index page showing as index.html. The handler
configuration is registered using the Gorilla Mux attached to the / path
prefix (line 66).

The next part is the code that takes care of the registration of the /login
endpoint (line 63). The postHandler function (line 34) extracts and
validates the username and password information passed from the request.

The web page contains two input elements, the username and password,
which are sent by the browser when the user clicks on the Login button.
When the handler (line 34) receives the data, it parses it using the
ParseForm() function (line 36) and then extracts the value passed by
referencing the field names username and password (line 38), which
corresponds to the name of the HTML element specified inside the file in
chapter04/dynamic/static/index.html.

On completing the validation process, the app then uses the Go
html/template package (line 44) to parse another HTML file
(static/tmpl/msg.html). The app will parse the HTML file and will insert

all the relevant information to be included as part of the HTML page using
the template.Must function (line 51).

This msg.html file contains a {{.}} placeholder string that is understood by
the html/template package (line 18):

1 <!DOCTYPE html>

2 <html>
3 <head>
18 <p class="text-xs text-gray-50">{{.}}

</p>

24 </html>

In this section, we have learned how to render dynamic content. In the next
section, we will look at bundling both our static and dynamic content to
allow us to run the application as a single file.

Using Go embed to bundle your
content

In this section, we will look at how to package applications into a single
binary. Packaging everything the application needs into a single binary
makes it easier to deploy the application anywhere in the cloud. We are
going to use the embed package that is provided by the Go standard library.
The following link provides further detail on the different functions
available inside the embed package: https://pkg.go.dev/embed.

Note
The embed package is only available in Go version 1.16 and upwards.

The following code provides a simple example of using the embed package
in three different ways — to embed a specific file, embed the full contents of
a folder, and embed a specific file type:

https://pkg.go.dev/embed

O©CoOoO~NOULA, WNRE

package main

import (

var

)

"embed"

llfmt n
"github.com/gorilla/mux"
"html/template"
"io/fs"

lllogll
"net/http"

IIOSII
"path/filepath"
"strings"
lltimell

(

Version string = strings.TrimSpace(version)
//go:embed version/version.txt

version string

//go:embed static/*
staticEmbed embed.FS

//go:embed tmpl/*.html
tmplEmbed embed.FS

type staticHandler struct {

}

func (h staticHandler) ServeHTTP(w
http.ResponseWriter, r *http.Request) {
path, err := filepath.Abs(r.URL.Path)

staticPath string
indexPage string

log.Println(r.URL.Path)
if err !'= nil {

http.Error(w, err.Error(),
http.StatusBadRequest)

return

}

path = filepath.Join(h.staticPath, path)

_, err = os.Stat(path)

46 log.Print("using embed mode")

47 fsys, err := fs.Sub(staticEmbed, "static")

48 if err != nil {

49 panic(err)

50 }

51

52 http.FileServer(http.FS(fsys)).ServeHTTP(w,
r)

53 }

54

55 //renderFiles renders file and push data (d) into

// the templates to be rendered
56 func renderFiles(tmpl string, w
http.ResponseWriter, d interface{}) {
57 t, err := template.ParseFS(tmplEmbed,
fmt.Sprintf("tmpl/%s.html", tmpl))

58 if err !'= nil {

59 log.Fatal(err)

60 }

61

62 if err := t.Execute(w, d); err != nil {

63 log.Fatal(err)

64 }

65 }

66

67 func postHandler(w http.ResponseWriter,
r *http.Request) {

68 result := "Login "
69 r.ParseForm()
70
71 if validateUser(r.Formvalue("username"),
r.FormValue("password")) {
72 result = result + "successfull"
73 } else {
74 result = result + "unsuccessful"
75 }
76
77 renderFiles("msg", w, result)
78 }
79
80 func validateUser(username string,
password string) bool {
81 return (username == "admin") &&
(password == "admin")
82 }
83

84 func main() {
85 log.Println("Server Version :", Version)

86

87 router := mux.NewRouter()

88

89 router.HandleFunc("/login", postHandler)
.Methods("POST")

90

91 spa := staticHandler{staticPath: "static",

indexPage: "index.html"}

92 router.PathPrefix("/").Handler(spa)

93

94 srv := &http.Server{

95 Handler: router,

96 Addr: "127.0.0.1:3333",

97 WriteTimeout: 15 * time.Second,

98 ReadTimeout: 15 * time.Second,

99 }

100

101 log.Fatal(srv.ListenAndServe())

102 }

The source code resides inside the chapter4/embed folder. The code uses
the //go:embed directive (lines 19, 22, and 25). This tells the compiler that
the version string (line 20) will get the content from

version/version. txt, which contains the version information that we
want to display to the user.

We also declare the //go:embed directive telling the compiler that we want
to include everything inside the static/ (line 22) and tmpl/ (line 25)
folders. During the compilation process, the compiler detects the preceding
directives and automatically includes all the different files into the binary.

The tmpl directory contains the template that will render dynamic content,
and since we have embedded it into the binary, we need to use a different
way to render it (line 56). The new renderFiles function uses the
template.ParseFsS function (line 57), which renders the template declared
in the tmplEmbed variable.

The renderFiles function is called from the postHandler function (line
77), passing in the template name and other parameters.

Now, this time when building our application, the final executable file
contains the different files (HTML, CSS, etc.) in a single file. We can now

compile the application, as follows:

go build -o embed

This will generate an executable file — for example, in Linux, it will be
called embed and in Windows, it will be called embed . exe. Next, run the
application as follows:

./emded

Open your browser and go to http://localhost:3333/. It should look the
same as before, except that everything is being retrieved via embed.FS. You
now have a fully embedded application that can be deployed as a single
binary in the cloud.

Summary

This pretty big chapter served as our first look at interacting with user-
provided data and handling web requests. We’ve seen how we can add
RESTful endpoints using the Go standard library and have learned how we
can use the utility functions of Gorilla Mux to quickly add more power and
functionality to our application. We’ve also explored the different ways we
can handle requests. In one method, we can now utilize Go’s
html/template library to dynamically create content and package it as a
directory read from disk. Alternatively, we can use the new Go embed
directive to give us a single binary that packages up all our assets and
makes for simple deployments.

In the next chapter, we will look at adding middleware to help process the
request pipeline and introduce security to ensure that content can be
accessed securely.

Securing the Backend and
Middleware

In previous chapters, we learned how to build our database, run our web
application as a server, and serve dynamic content. In this chapter, we will
discuss security — in particular, we will look at securing the web app.
Security is a vast topic so for this chapter, we will just look at the security
aspects that are relevant to our application. Another topic that we will look
at is middleware and using it as part of our application.

Middleware is software that is introduced into an application to provide
generic functionality that is used for incoming and outgoing traffic in our
application. Middleware makes it easy to centralize features that are used
across different parts of our applications, and this will be discussed more in
upcoming sections of this chapter.

In this chapter, we’ll be covering the following topics:

Adding authentication
Adding middleware

Adding cookies and sessions with Redis

Upon completing this chapter, you will have learned how to set up a user
database and add authentication to the app. We will also learn about
middleware and how to add it to an existing app. Lastly, you will learn
about cookies, storing information in sessions, and using Redis as
persistence storage for these sessions.

Technical requirements

All the source code explained in this chapter can be checked out at
https://github.com/PacktPublishing/Becoming-a-Full-Stack-Go-

https://github.com/PacktPublishing/Becoming-a-Full-Stack-Go-Developer/tree/main/Chapter05

Developer/tree/main/Chapter05.

Adding authentication

Building the application requires some consideration in terms of designing
the application, and one of the key pieces that needs to be thought of ahead
of time is security. There are many facets of security but in this section of
our application, we will look at authentication.

Note

Authentication is the process of validating that a user is who they claim to
be.

To add authentication to our app, we will need to store the user information
in the database first. The user information will be used to authenticate the
user before using the application. The database user table can be found
inside the db/schema.sql file:

CREATE TABLE gowebapp.users (

User_ID BIGSERIAL PRIMARY KEY,

User_Name text NOT NULL,

Password_Hash text NOT NULL,

Name text NOT NULL,

Config JSONB DEFAULT '{}'::JSONB NOT NULL,
Created_At TIMESTAMP WITH TIME ZONE DEFAULT NOW() NOT
NULL,

Is_Enabled BOOLEAN DEFAULT TRUE NOT NULL

The following table outlines the data types that are used for the user table:

BIGSERIAL An auto-incrementing data type that is normally used as a primary key.

TEXT A variable-length character string.

The JSON binary data type is suitable for JSON data. The
JSONB database provides this data type to make it easier to
index, parse, and query JSON data directly.

https://github.com/PacktPublishing/Becoming-a-Full-Stack-Go-Developer/tree/main/Chapter05

TIMESTAMP A date and time data type.

BOOLEAN A logical data type that contains true or false.

The authentication will be performed by checking the User_Name and
Pass_Word_Hash fields. One thing to note — the Pass_Wword_Hash field
contains an encrypted password, and we will look further into encrypting
the password a bit later.

As discussed in Chapter 1, Building the Database and Model, we are using
sglc to generate the Go code that will talk to the database. To generate the
Go code, execute the following command:

make generate

The code that will read the user information will be stored under the
gen/query.sql_gen.go file as shown here:

func (g *Queries) GetUserByName(ctx context.Context,
userName string) (GowebappUser, error) {
row := (¢.db.QueryRowContext(ctx, getUserByName, userName)
var 1 GowebappUser
err := row.Scan(
&i.UserlID,
&i.UserName,
&1i.PasswordHash,
&i.Name,
&i.Config,
&i.CreatedAt,
&i.IsEnabled,
)

return i, err

}

The GetUserByName function queries the database by calling the
QueryRowContext () function, passing in the query that we want to use,
which is defined as shown here:

const getUserByName = "-- name: GetUserByName :one
SELECT user_id, user_name, pass_word_hash, name, config,
created_at, is_enabled

FROM gowebapp.users

WHERE user_name = $1

The query uses the WHERE clause and expects one parameter, which is the
user_name field. This is populated by passing the userName parameter into
the QueryRowContext () function.

We will look at how to create a dummy user when we start the application
in the next section. A dummy user is a user that is normally used for testing
purposes — in our case, we want to create a dummy user to test the
authentication process.

Creating our dummy user

Our database is empty so we will need to populate it with a dummy user
and in this section, we will look at how to create one. We will add code to
create a dummy user when the application starts up. The following function
inside main.go creates the dummy user, and this user will be used to log in
to the application:

func createUserDb(ctx context.Context) {

//has the user been created

u, _ := dbQuery.GetUserByName(ctx, "user@user")

if u.UserName == "user@user" {
log.Println("user@user exist...")
return

}

log.Println("Creating user@user...")

hashPwd, _ := pkg.HashPassword("password")

_, err := dbQuery.CreateUsers(ctx,

chapter5.CreateUsersParams{

UserName: "user@user",
PassWordHash: hashPwd,
Name: "Dummy user",

1)

When the application starts up it will first check whether an existing test
user exists and if none exists, it will automatically create one. This is put
inside the application to make it easier for us to test the application. The
createUserDb() function uses the CreateUsers() generated sqlc function
to create the user.

One of the things you will notice is the password is created by the following
code snippet:

hashPwd, _ := pkg.HashPassword("password")

The password is passed to a HashPassword function that will return a
hashed version of the clear text password.

The HashPassword function uses the Go crypto or berypt standard
libraries that provide a function to return a hash of a plain string as shown
here:

func HashPassword(password string) (string, error) {
bytes, err :=
bcrypt.GenerateFromPassword([]byte(password), 14)
return string(bytes), err

}

The hash generated from the string password will be different whenever the
bcrypt.GenerateFromPassword function is called. The
GenerateFromPassword() function uses the standard cryptography library
to generate the hash value of the password.

Cryptography is the practice of ensuring text messages are converted into a
form that is not easy to read or deconstruct. This provides data security to
make it hard to deconstruct what the data is all about. Go provides a
standard library that provides cryptography functions, which is available in
the golang.org/x/crypto package. The crypto library provides a number
of cryptography functions that you can choose from — it all depends on what
you need for your application. In our example, we use bcrypt, which is a
password-hashing function.

Now that we have added a function to create a dummy user in the database,
in the next section, we will look at how to authenticate with the database.

Authenticating a user

User authentication is simple, as the application will use the function
generated by sqlc, as shown here:

func validateUser(username string, password string) bool {
u, _ := dbQuery.GetUserByName(ctx, username)

return pkg.CheckPasswordHash(password, u.PassWordHash)

}

The GetUserByName function is used, with the username passed as a
parameter to obtain the user information. Once that has been retrieved
successfully, it will check whether the password is correct by calling
CheckPasswordHash.

The checkPasswordHash function uses the same crypto or bcrypt package
and it calls the CompareHashAndPassword function, which will compare the
hashed password with the password sent by the client. The function returns
true if the password matches.

func CheckPasswordHash(password, hash string) bool {
err := bcrypt.CompareHashAndPassword([]byte(hash),

[]byte(password))
return err == nil

}

The validateUser function will return true if the username and password
combination exists in the database and is correct.

Start your application and navigate your web browser to
http://127.0.0.1:3333/ and you should see a login prompt. Try logging
in with incorrect credentials before entering user@user / password — you

should now be sent to the successful login screen! Congratulations — you
successfully authenticated!

In the next section, we will look at middleware, what it is, and how to add it
to our application.

Adding middleware

Middleware is a piece of code that is configured as an HTTP handler. The
middleware will pre-process and post-process the request, and it sits
between the main Go server and the actual HTTP handlers that have been
declared.

Adding middleware as part of our application helps take care of tasks that
are outside of the main application features. Middleware can take care of

authentication, logging, and rate limiting, among other things. In the next
section, we will look at adding a simple logging middleware.

Basic middleware

In this section, we are going to add a simple basic middleware to our
application. The basic middleware is shown in the following code snippet:

func basicMiddleware(h http.Handler) http.Handler {
return http.HandlerFunc(func(wr http.ResponseWriter,
req *http.Request) {
log.Println("Middleware called on", req.URL.Path)
// do stuff
h.ServeHTTP(wr, req)
1)
}

Gorilla Mux makes it incredibly easy to use our middleware. This is done
by exposing a function on the router called Use(), which is implemented
with a variadic number of parameters that can be used to stack multiple
pieces of middleware to be executed in order:

func (*mux.Router).Use(mwf ...mux.MiddlewareFunc)

The following code snippet shows how we implement the Use () function to
register the middleware:

func main() {

// Use our basicMiddleware
router.Use(basicMiddleware)

mux .MiddwareFunc is simply a type alias for func(http.Handler)
http.Handler so that anything that meets that interface can work.

To see our function in action, we simply call router.Use(), pass in our
middleware, navigate to our web app, and there we can see that it is called:

go build && ./chapter5

2022/01/24 19:51:56 Server Version : 0.0.2

2022/01/24 19:51:56 user@user exists...

2022/01/24 19:52:02 Middleware called on /app

2022/01/24 19:52:02 Middleware called on /css/minified.css

You may be wondering why you can see it being called multiple times with
different paths — the reason is that when requesting our app, it’s performing
a number of GET requests for the numerous hosted resources. Each of these
is passing through our middleware as shown in Figure 5.1:

Web Client Main :
Application - Application — Middleware = Handler-A — Handler-B

Figure 5.1 — Request passing through middleware

The handlers library — available at https://github.com/gorilla/handlers —
contains many other useful middleware methods and we’ll be using some of
them later, including the handlers.CORS() middleware to allow us to
handle Cross-Origin Resource Sharing (CORS). We will look at CORS

https://github.com/gorilla/handlers

and using this middleware in more detail in Chapter 9, Tailwind,
Middleware, and CORS.

In this section, we learned about middleware, the different functionality that
it can provide, and how to add it to an app. In the next section, we will look
at session handling and using cookies to track user information as they use
the application.

Adding cookies and sessions

In this section, we are going to take a look at how we are going to keep
track of the users when using our application. We are going to take a look at
session management and how it can help our application understand
whether a user is allowed to access our application. We are also going to
take a look at cookies, which are a session management tool that we are
going to use.

The session management discussed in this chapter is part of the Gorilla
project, which can be found at https://github.com/gorilla/sessions.

Cookies and session handling

In this section, we are going to look at session handling and how to use it to
store information relevant to a particular user. The web as we know is
stateless in nature, which means that requests are not actually tied to any
other previous requests. This makes it hard to know which requests belong
to which user. Hence, the need arises to keep track of this and store
information about the user.

Note

A web session is used to facilitate interaction between users and the
different services that are used in the sequence of requests and responses.
The session is unique to a particular user.

https://github.com/gorilla/sessions

Sessions are stored in memory, with each session belonging to a particular
user. Session information will be lost if the application stops running or
when the application decides to remove the session information. There are
different ways to store session information permanently in storage to be
used at a future time.

Figure 5.2 shows the high-level flow of how a session is created and used
for each incoming request. New sessions are created when one does not
exist and once one is made available, the application can use it to store
relevant user information.

Incoming Request

Authenticate
user

Serve login page — — Create new session

Session
available 7

User
logged in ?

Serve requested page

Figure 5.2 — Session check flow

We know that a session is used to store user-specific information — the
question is how the application knows which session to use for which user.
The answer is a key that is sent back and forth between the application and

the browser. This key is called a session key, which is added to the cookie
header as shown in Figure 5.3.

+ Request Headers (472 B) Raw
image/webp,*/*
t-Encoding: gzip., deflate
o en-Us.en;q=0.5
on; kKeep-alive
Cookie: session token=MTYOMzIWwMDOBOXxEdilCOKFFOLBOSUFEUKFCRUFBOUpmLUNBQUVHY zNSeWFXNWSEQThBRFAG
MWRHaGKL b1 JWwWT IGHFpXUUVZLTL2YKFIQOFEQT 18 T6UKeoMoR IMOT LWET fQd3Y 15 15GP1uKe] GbrfFYuk=
localhost:3333
er: http://localhost:3333/login
ent: Mozillase.0 (X11; Linux x866& 64; rv:89.0) Gecko/2010010]1 Firefox/89.0

Figure 5.3 — Cookie containing a session token

As seen in Figure 5.3, the cookie with the session_token label contains the
key that will be sent back to the server to identify the user stored in the
session. Figure 5.3 shows the developer console of the browser. For
Firefox, you can open it using the Tools > Web Developer > Web
Developer Tool menu, and if you are using Chrome, you can access it using
Ctrl + Shift + J.

The following snippet shows the sessionvalid function, which checks
whether the incoming request contains a valid session_token key. The
store.Get function will automatically create a new one if an existing
session is not available for the current user:

//sessionValid check whether the session is a valid session
func sessionValid(w http.ResponseWriter, r *http.Request)
bool {

session, _ := store.Get(r, "session_token")

return !session.IsNew

Once the application finds a session for the user, it will check the
authentication status of the user as shown here. The session information is
stored as a map, and the map type stores information as key and value, so in

our case, we are checking whether the session contains the authenticated
key:

func hasBeenAuthenticated(w http.ResponseWriter, r
*http.Request) bool {

session, _ := store.Get(r, "session_token")

a, _ := session.Values["authenticated"]

If there is a failure to obtain the authenticated key, the application will
automatically redirect the request to display the login page as shown here:

//if it does have a valid session make sure it has been
//authenticated
if hasBeenAuthenticated(w, r) {

}

//otherwise it will need to be redirected to /login

http.Redirect(w, r, "/login", 307)

We have learned about sessions and how we can use them to check whether
a user has been authenticated. We will explore this further.

Storing session information

In the previous section, we learned about sessions and cookie handling. In
this section, we will look at how to store session information pertaining to
the user. The information stored inside the session is stored in the server
memory, which means that this data will be temporarily available as long as
the server is still running. Once the server stops running, all the data stored
in memory will not available anymore. This is why we will look at
persisting the data in a separate storage system in the next section.

In our sample application, we are storing information on whether the user
has been authenticated successfully. Users are allowed to access other parts
of the application only when they have been successfully authenticated.

Run the sample application and open your browser in private mode
(Firefox) or incognito mode (Chrome) and type
http://localhost:3333/dashboard.html as the address. The application
will redirect you to the login page because the session does not exist. The
operation to check for the existence of the authenticated key is performed
inside the storeAuthenticated function shown here:

func storeAuthenticated(w http.ResponseWriter, r
*http.Request, v bool) {

session, _ := store.Get(r, '"session_token")
session.Values["authenticated"] = v
err := session.Save(r, w)

The session.Save function saves the session into memory after creating
the authenticated key with a new value pass as part of the function call.

Using Redis for a session

As discussed in the previous section, the sessions are stored in memory. In
this section, we will look at storing the session information permanently
using Redis. The code samples for this section can be found at
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-
Go/tree/main/Chapter05-redis.

The reason why we want to use Redis is because of its simplicity in terms
of data storage, only containing key values. It also can be configured for
both in-memory and permanent external storage. For our application, we
will need to configure redis to store information on the disk to make it
permanent. Execute the following make command to run redis:

make redis

The following is the full Docker command used to run redis:

docker run -v $(PwWD)/redisdata:/data --name local-redis -p
6379:6379 -d redis --loglevel verbose

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter05-redis

The command runs redis using Docker and specifies the redisdata local
directory as the location of the permanent file storage for the data. To run
the sample application, make sure you also run postgres using this
command:

make teardown_recreate

Once both redis and postgres are up and running, you can now run the
sample app and use the web application. The following code snippet shows
the initRedis() function, which takes care of initializing Redis. The
function uses two different packages, which you can find at
https://github.com/redis/go-redis and
https://github.com/rbeervilla/redisstore. The go-redis/redis package
contains the driver and API to communicate with Redis while
rbcervilla/redisstore contains a simple API to read, write, and delete
data from Redis:

func initRedis() {
var err error
client = redis.NewClient(&redis.Options{
Addr: "localhost:6379",

1)
store, err = rstore.NewRedisStore(context.Background(),
client)
if err != nil {
log.Fatal("failed to create redis store: ", err)
}

store.KeyPrefix('"session_token")

Once the initialization has been completed, the store variable will be used
to write data to and read it from Redis. Inside the gorilla library, the
sessions package automatically uses the configured client object to
handle all writing and reading of information to and from redis.

A new additional handler is added to allow the user to log out from the
application as shown in the handler snippet here:

https://github.com/redis/go-redis
https://github.com/rbcervilla/redisstore

func logoutHandler(w http.ResponseWriter, r *http.Request) {
if hasBeenAuthenticated(w, r) {

session, _ := store.Get(r, '"session_token")
session.Options.MaxAge = -1
err := session.Save(r, w)
if err !'= nil {
log.Println("failed to delete session", err)
}
}
http.Redirect(w, r, "/login", 307)
}

The logout operation is done by setting the Options.MaxAge field for a
session. This indicates to the library that the next time the same
session_token is passed to the server, it is considered an invalid/expired
session and it will redirect to the login page.

Summary

In this chapter, we learned about a few new things that can help our
application better. We learned how to add an authentication layer to our
application to secure it, which helps protect our application from being
accessed anonymously. We also looked at adding middleware to our
application and showed how easy it was to add different middleware to our
application without changing much code.

Lastly, we looked at session handling and learned how to use it to track user
information and a user’s journey with our application. Since session
handling is not stored permanently, we looked at using the redis data store
to store the user session information, which allows the application to
remember user information anytime the application is restarted.

In the next chapter, we will look at writing code that will process
information back and forth between the browser and our application. We
will look at building a REST API that will be used to perform different
operations on our data.

Moving to API-First

In the previous chapters, we learned about building databases, adding
monitoring to applications, using middleware, and session handling. In this
chapter, we will learn about building an API in our application, and why an
API is an important part of writing applications as it forms the interface
between the frontend and the backend. Building the API first is important,
as it forms the bridge for data exchanges and can be thought of as a contract
between the frontend and the backend. Having the proper and correct form
of contract is important before building an application.

We will also explore the concepts of REST and JSON to get a better
understanding of what they are and how they are used throughout our
application.

Upon completion of this chapter, you will know how to design a REST API
using Gorilla Mux and also how to process requests to perform operations
by converting data to and from JSON. You will also learn how to take care
of error handling.

In this chapter, we’ll be covering the following topics:

Structuring API-first applications

Exposing REST APIs

Converting data to and from JSON using Go
Error handling using JSON

Technical requirements

All the source code explained in this chapter can be checked out from
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-
Go/tree/main/Chapter06.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter06

Structuring an application

Go applications are structured inside directories, with each directory
containing Go source code that means something for those applications.
There are many ways to structure your Go application in different kinds of
directories; however, one thing that you have to remember is to always give
a directory a name that will be easy for others to understand. As an
application grows with time, the chosen directory structure and where code
is placed has a big impact on how easily other developers in your team will
be able to work with the code base.

Defining packages

Up to this point, we’ve kept things fairly simple, but we’re going to up our
game a little and move to a fairly common layout. We won’t use the term
“standard layout,” as there’s no such thing in Go, but we’ll look at how
we’re structuring our new project and talk about how we reason them
through to best structure our Go application for clarity and understanding,
as shown in Figure 6.1.

———— m—— = ———

~ [chapteré
internal
p api
& auth.go
4 env.go
~ [migrations
=ar 000001_schema.down.sgl
zac 000001_schema.up.sql
~ [queries
sac EXErcise.sql
sac User.sql
o store
“ db.go
| exercise.sql_gen.go
© models.go
| usersql_gen.go
% .gitignore
7 generate.go
» = go.mod
& handlers.go
& main.go
Makefile
e readme.md
* session_middleware.go
e Sqleyaml

4

Figure 6.1: Chapter 6 package structure

Let’s examine some of these files in a bit more detail to understand these
decisions.

generate.go

If you take a look at this file, it can appear confusing at first, but we’ve used
a neat Go feature called go generate that can help:

package main
//go:generate echo Generating SQL Schemas
//go:generate sglc generate

At a glance, it looks like a comment because comments in Go start with the
// character. However, this one starts with the word go:generate. This is
called the go:generate directive; what this means is that when go
generate is executed (as shown in the following code block), it will
execute the command specified — in our example, it will print the text
Generating SQL Schemas and execute the sqlc command-line tool (sqlc
generate):

$ go generate
Generating SQL Schemas
$

This is a useful technique to easily generate your build prerequisites; this
can be done as part of your workflow, performed by Makefile, or done by
your CI/CD. Makefile is a file containing sets of rules to determine which
parts of a program need to be compiled and what command to use to
compile the source code. It can be used to compile all kinds of
programming language source code.

All we’re doing in our generate.go file is simply ensuring that we generate
the latest schema files for sqlc. We could add mock generation, more
informational messages, or generate archives or any manner of other useful
things that might make up our build.

handlers.go

This name comes purely from our experience in using the same pattern of
naming files after the functionality defined therein. Our handlers file
provides a single place (for now) where our HTTP handlers can be found.
Ours contains login, logout, and all kinds of handlers and their request and
response types needed to interact with our app. We don’t do anything
outside of our handlers in this file; all connectivity and addition of
middleware are performed as part of main.go to ensure the separation of
concerns.

internal/

In the “old days” of Go — back before 1.0 was released — the Go source
code featured a directory called pkg, which was for internal-only code and
became an idiom for the community, as well as a way to mark
subfolders/packages as internal to a particular project.

The pkg folder was eventually removed from the Go project but it left a bit
of an unfulfilled need, and to that end, the internal directory was created.
internal is a special directory in so much as it is recognized by the Go tool
itself, which allows an author to restrict importing the package unless they
share a common ancestor. To demonstrate this, we’re storing our API
package here as well as env.go (used to simplify a way to read
environmental variables in the app) and auth.go (our specific way to
handle authorization) — the auth.go or handlers.go files in particular are
good options to prevent others from importing, while others like the env
package are more general and can be moved up and out.

migrations, queries, and store

Using sqlc and golang-migrate, we’ve given ourselves a leg up in making
things easy to organize and increasing our ability to rapidly create our apps.
We’re just separating things to make life a bit easier, as shown in the
sglc.yaml configuration file here:

path: store/
schema: migrations/
gueries: queries/

To see how this works in practice, take a look at the readme file provided in
the repo.

We have looked at structuring applications by separating different parts of
an application into different folders. Grouping source code into different
folders allows easier navigation of the application when doing maintenance

and development. In the next section, we will explore building an API that
will be used to consume data.

Exposing our REST API

Let’s understand a few concepts that we are going to use in this section:

REST — REST stands for Representational State Transfer. It is a
widely accepted set of guidelines for creating web services. REST is
independent of the protocol used, but most of the time, it is tied to the
HTTP protocol that normal web browsers use. Some of the design
principles behind REST include the following:

A resource has an identifier — for example, the URI for a particular
order might be https://what-ever-shop.com/orders/1.

Uses JSON as the exchange format — for example, a GET request to
https://what-ever-shop.com/orders/1 might return the
following response body:

{"orderId":1, "ordervValue":0.99, "productId":100, "quantit
y":10}

REST APIs built on HTTP are called using standard HTTP verbs
to perform operations on resources. The most common operations
are GET, POST, PUT, PATCH, and DELETE.

API — API is an acronym for Application Programming Interface, a
software intermediary that allows two applications to talk to each other.
For example, if you are using the Google search engine, you are using
an API that it provides.

Combining both the preceding concepts, we come up with a REST API, and
the software that we are building is called a RESTful API, which means
that the API that we provide can be accessed using REST.

In this section, we will look at exposing our RESTful handlers, a pattern for
an API server, and discuss our new middleware.Main session and the API
package.

We’ve done some rework to prepare our new API-first project. We’ve
abstracted the API server into its own package in internal/api. Its
responsibility is to provide a server that accepts a port to bind on and the
ability to start the server, stop it, and add routes with optional middleware.

The following is a snippet (from chapter®6/main.go) of our new main
function showing this approach:

1 func main() {

2 Ces

< server := apli.NewServer(internal.GetAsInt(

"SERVER_PORT", 9002))

4

5 server.MustStart()

6 defer server.Stop()

7

8 defaultMiddleware := []mux.MiddlewareFunc{
9 api.JSONMiddleware,
10 api.CORSMiddleware(internal.GetAsSlice(

"CORS_WHITELIST",
11 []string{
12 "http://localhost:9000",
13 "http://0.0.0.0:9000",
il }r ! ’ !) ’
15),
16 }
17
18 // Handlers
19 server.AddRoute("/1login", handleLogin(db),
http.MethodPost, defaultMiddleware...)
20 server.AddRoute("/logout", handleLogout(),
http.MethodGet, defaultMiddleware...)

21
22 // Our session protected middleware
23 protectedMiddleware :=

append(defaultMiddleware,
validCookieMiddleware(db))
24 server.AddRoute("/checkSecret",
checkSecret(db), http.MethodGet,
protectedMiddleware...)

25
26
27 }

Pay special attention to how we’ve created our default middleware, which
is declared in the defaultMiddleware variable (line 8). For our protected
routes, we are appending the protectedMiddleware variable (line 23) into
the existing defaultMiddleware variable. Our custom session verification
middleware is added to the middleware chain (line 23) to ensure a valid
login before allowing access to our other handlers.

We’ve also pushed two types of middleware into this api package,
JSONMiddleware (line 9) and CORSMiddleware (line 10), which takes a slice
of strings for a CORS allow-list, which we’ll look at in more depth in the
next section.

Cross-Origin Resource Sharing
(CORS)

Anyone working with API-first applications will encounter the concept of
CORS. It’s a security feature of modern browsers to ensure that web apps
on one domain have permission to request APIs on a different origin. The
way it does this is by performing what is called a preflight request, which is
basically just a normal OPTIONS request. This returns information, telling
our app that it is allowed to talk to the API endpoint, along with the
methods it supports and the origins. Origins contain the same domain sent
by the client in the origin header, or it could be a wildcard (*), which
means that all origins are allowed, as explained in Figure 6.2.

Client Server

—
% . OPTIONS /doc HTTP/l.1
S . Origin: https://foo.example
g ' Access-Control-Request-Method: BOST
= ! Access=Control=-Request-Headers: X-PINGOTHER, Content=-type
et i
S |
=
oo
e .
! HTTF/1.1 204 Mo Content |
/| Access—Control-Allow-0rigin: hteps://foo.example |
Accegs=Control=Al low=-Mathods: BPOST, GET, OPTIONS]
Access—Control-Allow-Headers: X-PINGOTHER, Content-Type !
Acoasa=Control-Max-Roge: B&400]
1
1
- -
$. POST fdoc HTTF/1l.1 f
3 . X-FINGOTHER: pingpong i
g ' Content-Type: text/mml; charset=UTF-8
= ! Origin: http://foo.example
= i
T

HTTE/1.1 200 OK !

Access-Control=-Allow=-0rigin: htep:/f/foo.example .
Vary: Accept-Encoding, Qrigin E
Conteant-Encoding: gzip !

Content=-Length: 235 ,

Figure 6.2: CORS flow (sourced from Mozilla MDN and licensed under
Creative Commons)

Our middleware wraps the Gorilla Mux CORS middleware to make it a
little easier for us to provide our CORS whitelisted domains (the domains

we’re happy to respond to requests on) and all the HTTP methods for those
same domains.

JSON middleware

Another piece of middleware that is functionally needed to enforce our
requirements for an API-powered application is JSON middleware. JSON,
short for Javascript Object Notation, is an open standard file format that
is used to represent data in a key-value pair and arrays.

JSON middleware uses HTTP headers to check what kind of data is being
sent in a request. It checks the content -Type header key, which should
contain the application/json value.

If it cannot find the value that it requires, then the middleware will check
the value of the Accept header to see whether it can find the
application/json value. Once the check is done and it cannot find the
value that it is looking for, it replies that it’s not a suitable content type for
us to work with. We also add that header to our Responsewriter so that we
can ensure we’re telling the consumer we only support JSON and send that
back to them.

The following code snippet shows the JSON middleware:

1 func JSONMiddleware(next http.Handler)
http.Handler {

2 return http.HandlerFunc(func(wr
http.ResponseWriter, req *http.Request) {
3 contentType :=
req.Header.Get("Content-Type")
4
5 if strings.TrimSpace(contentType) == "" {
6 var parseError error
7 contentType, _, parseError =
mime.ParseMediaType(contentType)
if parseError != nil {
9 JSONError (wr,
http.StatusBadRequest,
"Bad or no content-type header
found")
10 return
11 }
12 }
13
14 if contentType != "application/json" {
15 JSONError (wr,
http.StatusUnsupportedMediaType,
"Content-Type not
application/json")
16 return
17
18 // Tell the client we're talking JSON as

// well.
19 wr .Header () .Add("Content-Type",

20
21
22

"application/json")
next.ServeHTTP(wr, req)
1)
}

Line 14 checks whether the Content-Type header contains an
application/json value; otherwise, it will return an error as part of the
response (line 15).

Now that we understand the concept of middleware, we’ll develop some
middleware to make handling our sessions easier.

Session middleware

This session middleware does not fit into our api package as it’s closely
tied to our session-handling functionality, as shown in the following code

snippet:

~N O O b

(0]

11
12
13
14
15

16

session, err := cookieStore.Get(req,
"session-name'")
if err !'= nil {
api.JSONError (wr,
http.StatusInternalServerError,
"Session Error")
return

}

userID, userIDOK :=
session.Values["userID"].(int64)
isAuthd, isAuthdOK :=
session.Values["userAuthenticated"]. (bool)
if luserIDOK || !'isAuthdOK {
api.JSONError (wr,
http.StatusInternalServerError,
"Session Error")
return

}

if !isAuthd || userID < 1 {
api.JSONError(wr, http.StatusForbidden,
"Bad Credentials")
return

17 }

18 50 ¢

19 ctx := context.WithValue(req.Context(),
SessionKey, UserSession{

20 UserID: user.UserlD,

21 1)

22 h.ServeHTTP(wr, req.WithContext(ctx))
23

What the preceding middleware does is attempt to retrieve our session from
cookiestore (line 1), which we covered in the previous chapter. From the
returned session map, we perform an assertion on two values (line 7) that
assigns userID the int64 value and the Boolean userIDOK.

Finally, if everything checks out, including a check of the database for the
user, we use context.withvalue() (line 19) to provide a new context with
our sessionKey, which is a unique type to our package.

We then provide a simple function called userFromSession that our
handlers can call to check the validity of the key type and the incoming
session data.

In this section, we learned about middleware and looked at adding different
types of middleware to an application. Also, we looked at CORS and how it
works when developing web applications. In the next section, we will look
in more detail at JSON and use models to represent JSON for requests and
responses.

Converting to and from JSON

In this section, we will look at getting and sending data from and to JSON.
We will also look at creating a structure to handle data and how the JSON
conversion is done.

When dealing with JSON in Golang via the standard library, we’ve got two
primary options —json.Marshal/Unmarshal and

json.NewEncoder (io.Writer)/NewDecoder (io.Reader). In this chapter,
we will look at using the Encoder/Decoder methods. The reason for using

these methods is that we can chain a function to the encoder/decoder that’s
returned and call the .Encode and .Decode functions with ease. Another
benefit of this approach is that it uses the streaming interface (namely
io.Reader and io.Writer, used to represent an entity from/to which you
can read or write a stream of bytes — the Reader and writer interfaces are
accepted as input and output by many utilities and functions in the standard
library), so we have other choices than Marshal, which works with
preallocated bytes, meaning we’re more efficient with our allocations and
also faster.

Defining request model

Data that flows through our application will be wrapped inside a struct. A
struct is a structure that is defined to hold data. This makes it easier to
transport data across different parts of the application; it does not make
sense, if you have to transport 10 different pieces of data to different parts
of the application, to do this by calling a function with 10 parameters, but if
it is inside a struct, the function will only have to accept one parameter of
that type. For simplicity, structs that hold data are also called models, as the
field defined inside the struct is modeled on the data that it represents.

Let’s take a look at the model that we defined to wrap the login data
(username and password) in the following code:

func handleLogin(db *sgl.DB) http.HandlerFunc {
return http.HandlerFunc(func(wr http.ResponseWriter, req
*http.Request) {
type loginRequest struct {
Username string “json:"username"’
Password string " json:'"password""

}

As seen in the preceding code, the loginRequest model is declared with a
json:"username" definition. This tells the standard library JSON converter
the following:

username — the key name used when converted to a JSON string

omitempty — if the value is empty, the key will not be included in the
JSON string

More information can be found at
https://pkg.go.dev/encoding/json#Marshal, where you can see the different
configurations that a model can have to convert from/to JSON.

Now that we have defined the model inside the function, we want to use it.
The handleLogin function uses the Decode function that exists inside the
json standard library to decode the data, as shown in the following snippet:

payload := loginRequest{}

if err := json.NewDecoder(req.Body).Decode(&payload); err !=
nil {
b

Once successfully converted, the code can use the payload variable to
access the values that were passed as part of the HTTP request.

Let’s take a look at another model that the code defines to store exercise set
information that is passed by the user. The way to convert the data into
newSetRequest is the same as loginRequest using the Decode function:

1 func handleAddSet(db *sql.DB) http.HandlerFunc {
2 return http.HandlerFunc(func(wr
http.ResponseWriter,
req *http.Request) {
3
4
5
6 type newSetRequest struct {
7 ExerciseName string
"json:"exercise_name,omitempty" "
8 Weight int “json:"weight,omitempty""
9 }
10
11 payload := newSetRequest{}

12 if err := json.NewDecoder(req.Body)

https://pkg.go.dev/encoding/json#Marshal

.Decode(&payload); err !'= nil {
13 50 ¢
14 return
15 }
16
17 50 ¢
18 1)
19 }
20

The function declares a new struct (line 6) called newSetRequest, and this
will be populated by calling the json.NewbDecoder () function (line 12),
which will be populated into the payload (line 11) variable.

In this section, we looked at using a model to host the information that is
passed by the user. In the next section, we will look at sending responses
back using the model.

Defining a response model

In this section, we will look at how to use a model to host information that
will be sent back as a response to the user. In Chapter 1, Building the
Database and Model, we learned about sqlc tools that generate the different
database models that will be used by our application. We will use the same
database model defined by sqlc, converted to a JSON string as a response
back to the user. The json package library is smart enough to convert
models into JSON strings.

Let’s look at the response sent back when a user creates a new workout — in
this case, the handleAddSet function, as shown here:

func handleAddSet(db *sql.DB) http.HandlerFunc {
return http.HandlerFunc(func(wr http.ResponseWriter,
req *http.Request) {

set, err :=
guerier.CreateDefaultSetForExercise(req.Context(),
store.CreateDefaultSetForExerciseParams{
WorkoutID: int64(workoutID),
ExerciseName: payload.ExerciseName,

Weight: int32(payload.wWeight),
1)

json.NewEncoder (wr) .Encode(&set)

1)
}

As you can see, the function calls the CreateDefaultSetForExercise
function and uses the set variable as a response back to the user by using
the Encode function. The returned set variable is of type GowebappSet,
which is defined as follows:

type GowebappSet struct {

SetID int64 " json:"set_id""

wWorkoutID int64 “json:"workout_id""
ExerciseName string “json:"exercise_name'""
Weight int32 “json:"weight""

Set1l int64 " json:"setl1""
Set2 int64 " json:'"set2""
Set3 int64 " json:'"set3""
}

When the model is converted using Encode and sent back as a response, this
is how it will look:

{
"set_id": 1,
"workout_id": 1,
"exercise_name": "Barbell",
"weight": 700,
"set1": 0,
"set2": 0,
"set3": 0

In this section, we looked at a model generated by sqlc that is not only used
to host read/write data to and from a database but also used to send
responses back to the user as a JSON string. In the next section, we will
look at another important feature that we need to add to the application,
error handling, which will be reported using JSON.

Reporting errors with JSON

There are many ways to handle errors when writing web applications. In
our sample application, we handle errors to inform users of what’s
happening with their request. When reporting errors to users about their
request, remember not to expose too much information about what’s
happening to the system. The following are some examples of error
messages reported to users that contain such information:

There is a connection error to the database

The username and password are not valid for connecting to the
database

Username validation failed

The password cannot be converted to plain text

The preceding JSON error use cases are normally used in scenarios where
more information needs to be provided to the frontend to inform users.
Simpler error messages containing error codes can also be used.

Using JSONError

Standardizing error messages is as important as writing proper code to
ensure application maintainability. At the same time, it makes it easier for
others to read and understand your code when troubleshooting.

In our sample application, we will use JSON to wrap error messages that
are reported to the user. This ensures consistency in the format and content
of the error. The following code snippet can be found inside the
internal/api/wrappers.go file:

1 func JSONError(wr http.ResponseWriter,
errorCode int, errorMessages ...string) {

wr .WriteHeader (errorCode)

if len(errorMessages) > 1 {
json.NewEncoder (wr) .Encode(struct {

A WN

5 Status string “json:'"status,omitempty"’
6 Errors []string " json:"errors,omitempty""’
7 H
8 Status: fmt.Sprintf("%d / %s'", errorCode,
http.StatusText(errorCode)),
9 Errors: errorMessages,
10 })
11 return
12 }
13
14 json.NewEncoder (wr).Encode(struct {
15 Status string “json:"status,omitempty"’
16 Error string “json:"error,omitempty"’
17 H
18 Status: fmt.Sprintf("%d / %s'", errorCode,
http.StatusText(errorCode)),
19 Error: errorMessages[0],
20 1)
21 }

The JSONError function will use the passed errorCode parameter and
errorMessages(line 1) as part of the JSON reported to the user — for
example, let’s say we call the /1ogin endpoint with the wrong credentials
using the following cURL command:

curl http://localhost:9002/1login -H 'Content-Type:
application/json' -X POST -d '{"username" : "user@user",
"password" : "wrongpassword"}

You will get the following JSON error message:

{"status":"403 / Forbidden", "error":"Bad Credentials"}

The error is constructed by using the struct that is defined when encoding
the JSON string (line 14).

Using JSONMessage

The sample application uses JSON not only for reporting error messages
but also for reporting successful messages. Let’s take a look at the output of

a successful message. Log in using the following cURL command:

curl http://localhost:9002/1ogin -v -H 'Content-Type:
application/json' -X POST -d '{"username" : "user@user",
"password" : "password"}'

You will get output that looks like this:

Trying ::1:9002...
* TCP_NODELAY set
* Connected to localhost (::1) port 9002 (#0)
> POST /login HTTP/1.1
> Host: localhost:9002

< Set-Cookie: session-
Name=MTYONTMOOTI10XXEdi1CQkFFQ180SUFBUKFCRUFBQVJQLUNBQU1HYzNS
eWFXNW5EQk1BRVhWelpYSkJkWFIVW1CcIMGFXTmhkR1ZrQkdKdmIydONBZOFCQ
m50MGNtbHVad3dJQUFaMWMyVnl1TVVFGYVCc1ME5qUUVBZOFDTfHMY75qzLVPoOMZ
3BbNY17gBWd_puOhl6jpgY-d29ULUV; Path=/; Expires=Sun, 20 Feb
2022 09:42:39 GMT; Max-Age=900; HttpOnly

* Connection #0 to host localhost left intact

Using the session-name token, use the following cURL command to create
a workout:

curl http://localhost:9002/workout -H 'Content-Type:
application/json' -X POST --cookie 'session-
Name=MTYONTMOOTI10XXEdi1CQkFFQ180SUFBUKFCRUFBQVJQLUNBQU1HYzNS
eWFXNW
5EQk1BRVhWelpYSkJKWFJIVW1cIMGFXTmhkR1ZrQkdKdmIydONBZOFCQm50M
GNtbHVad3dJQUFaMWMyVnlTVVFGYVc1ME5qUUVBZOFDfHMy75qzLVPOMZ3BbN
Y 17gBWd_puOhl6jpgY-d29ULUV'

On successfully creating the workout, you will see a JSON message that
looks like the following;:

{"workout_id":3,"user_id":1, "start_date":"2022-02-
20T09:29:25.4065232"}

Summary

In this chapter, we’ve looked at creating and leveraging our own
middleware for session handling as well as enforcing JSON usage on our
API. We’ve also reworked our project to use a common package layout to
help separate our concerns and set ourselves up for future work and
iteration.

Also in this chapter, we’ve introduced a number of helper functions,
including two for creating and reporting errors and messages to the user via
JSON and an API package to abstract our server handling, making it easy to
understand and preparing us to accommodate CORS.

In the next chapter, we will discuss writing frontends in more detail and
learn how to write frontend applications using a frontend framework.

Part 3:Single-Page Apps with Vue
and Go

In Part 3, we introduce frontend frameworks before diving into how we can
combine Vue with Go and explore different frontend technologies to power
our sample applications. We will look at implementing Cross-Origin
Resource Sharing (CORS) and using JWT for sessions in our application
to simplify and secure our app from bad actors!

This part includes the following chapters:

Chapter 7, Frontend Frameworks
Chapter 8, Frontend Libraries
Chapter 9, Tailwind, Middleware, and CORS

Chapter 10, Session Management

Frontend Frameworks

In this chapter, we will take a high-level look at the current JavaScript
frameworks available to modern web developers. We will compare some of
the popular ones, Svelte, React, and Vue, before creating a simple app in
Vue and ending by adding navigation using the popular Vue Router. This
will lay the foundations needed to later talk to our API server from Chapter
6, Moving to API-First.

Upon completion of this chapter, we will have covered the following:

Understanding the difference between server-side rendering and
single-page applications

Looking at different frontend frameworks
Creating applications using the Vue framework

Understanding routing inside the Vue framework

This chapter paves the way to the land of the frontend. We will learn about
the different parts of frontend development in this and the next chapters.

Technical requirements

All the source code used in this chapter can be checked out from
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-
Go/tree/main/ChapterQ7.

Make sure you have all the necessary tools installed on your local machine
by following the instructions from the Node.js
documentation:https://docs.npmjs.com/downloading-and-installing-node-js-
and-npm.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter07
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm

Server-side rendering versus single-
page apps

In Chapter 4, Serving and Embedding HTML Content, we created our app
as a server-side rendered app. What this means is that all of the content and
assets, including the HTML, are generated on the backend and sent on each
page request. There’s nothing wrong with this; our publisher, Packt, uses
server-side rendering (SSR) for its own site at
https://www.packtpub.com/. SSR as a technique is used by technologies
such as WordPress and many other sites that host content that changes less
frequently and may have less interactivity.

The alternative to SSR we’re going to use for our app is client-side
rendering (CSR). CSR works by having the client fetch the app as a bundle
of JavaScript and other assets, executing the JavaScript and the app
dynamically, and binding to an element that takes over the page rendering.
The app creates and renders each route dynamically in the browser. This is
all done without requiring any reloading of the bundle or content.

By moving to client-side rendering, it improves the app's interactivity and
responsiveness by allowing it to manipulate the document model, fetch
additional content and data via the API, and generally perform closer to
what a user might expect from a desktop app without constant page reloads.

When we talk about reactivity, we’re describing the situation in which
changes in the application state are automatically reflected in the document
object model (DOM). This is a key attribute of all of the frameworks we’ll
be exploring in this chapter, including React, Vue, and Svelte.

Introducing React, Vue, and more

If there’s one thing that the JavaScript community enjoys doing, it’s
creating new frameworks!

https://www.packtpub.com/

We’re going to explore and contrast a few of the most popular ones and
look at the common parts they all share and the main points of difference.

React

React is one of the most popular JavaScript libraries available. It was
created, and is still maintained, by Meta (formerly Facebook) and was
inspired heavily by a predecessor used internally within Facebook for
creating PHP components.

React uses the JavaScript Syntax eXtension (JSX) as a syntax, which
looks like a combination of HTML and Java Script. Although you can use
React without compilation, most React developers are used to the process
common to most modern frameworks, which is to combine and build the
source files, the .jsx and . vue files, and build them into a final bundle that
can be deployed as a static file. We’ll look at this in a later chapter.

: Bundle / Chunk Files
Source Files

i . '
| Build Process '
i []
[I
]]
] []
['
1]
i []
i 9 i
i i
= (2] 5
: 5] =]] = i
- =
i o = 5 T 5 '
1 (=8 ..g - — E]
o2 S % = B
! 7] o (2] o = !
i ! = |]
1 w]
['
n L]
1]
L []
i '
1]
i []

4

Figure 7.1: Modern JavaScript SPA build process

React is a very popular option for creating apps and one of its strengths is
the fact that there are a number of different options to choose from when
building your app, such as Redux, Flux, BrowserRouter, or React Router.
This flexibility is great but can cause conflict and strong opinions on the
“one true way.” The React team avoids this issue by continually calling out

that React is a library, not a framework, so choosing the components of
your app is down to the individual.

React is similar to other frameworks in that it has a full life cycle model that
can be “hooked” at runtime to override defaults (for example, render and
shouldComponentUpdate).

Svelte

Svelte straddles an interesting middle ground and is included as an
alternative to the two heavy hitters of React and Vue. Svelte takes the
approach of pushing more into the compilation step, removing the need for
techniques such as diffing the virtual DOM to transpile the code into vanilla
JavaScript. This approach means less work is done by the browser but it
still has a similar build process to both React and Vue for building bundles.
Svelte provides its own preferred router, called SvelteKit, but alternatives
exist and Svelte can represent a nice, lightweight alternative to the others.
Svelte is quite a new project when looking at the more established players
and doesn’t have as many resources behind it, but it is still viable for
smaller projects.

Vue

The final framework we’re going to introduce is Vue, which is what we use
as our preferred framework for building our frontend application.

The big appeal initially for me was the fact that the previous version of Vue
(version 2) could be loaded and run directly via a content domain network
(CDN), which made experimentation and prototyping incredibly easy back

in 2016 when it was first released.

Vue offers a very familiar syntax that makes it easy to learn — it separates
out the presentation from the logic and the styling, it’s very lightweight, and
it uses the concept of single-file components (SFCs).

The concept of SFC makes it incredibly easy to build simple, scoped
components that can be reused from project to project without the addition
of learning the “not-quite-JavaScript” JSX used by React.

The following code is a simple component that displays a greeting using the
Options API. When Vue was first released, it used the Options API by
default, but in later iterations, it has moved to include a newer Composition
API, which we’ll explore later:

<template>
<div>
<Thing @click="greetLog" />
<p class='"greeting">{{ greeting }}</p>
</div>
</template>
<script>
import Thing from '@/components/thing.vue';
export default {
name: 'Greeter',
components: ['Thing'],
props:{},
mounted(){},
methods: {
greetLog() { console.log('Greeter') };

data() {
return {
greeting: 'Hello World!'

}
}
}
</script>
<style scoped>
.greeting {
color: red;
font-weight: bold;

}
</style>

Example of a SFC Greeter.vue

As you can see in the preceding code block, the approach of Vue’s SFC
design has three parts: the HTML, the JavaScript, and the style (usually

CSS, often “scoped™). This means you can combine the HTML -esque style
of the <template> with small Vue-specific additions, such as
@click="functionName", to easily create our components. The @click
annotation featured here, which looks close to HTML, is the syntax used by
Vue to extend and bind HTML events to our objects — in this case, replacing
the native onClick attribute.

The <script> contained instance includes a name; props, used to provide
properties to the component from parents; mounted(), a function called
when the component is first added to the DOM; components, that is, the
components being imported for use by the component; assorted other
methods; and finally, the data() object, which can hold our components'
state.

The final part of the SFC is the <style> part — we can specify non-CSS
languages here. For example, we could use lang="scss" if we wanted to
use SCSS rather than CSS. We can also add the scoped keyword, which
means that Vue will use name mangling to ensure that our CSS styles are
scoped only to this component instance.

A final benefit of using Vue is the opinionated approach taken to build tools
(preferring to create Vite, which leverages the incredibly fast esbuild to
reduce bundle build times to milliseconds compared to the slower React),
component layout, and routers (Vue Router), which we’ll explore in later
chapters. The opinionated nature of Vue works nicely with the opinionated
nature of Golang itself, which helps remove a lot of debate on which
approach and components to choose to build your app, ensuring that when
you bring in more team members and hand over your successful full stack
app, you can be safe in the knowledge that another Vue developer wouldn’t
argue with you on how you did it, nor on the technology chosen — mainly as
they would’ve chosen the same!

So far in this section, we have looked at what the Vue framework is all
about. In the next section, we will learn by creating some simple apps using
the Vue framework.

Creating a Vue app

In the previous section, we discussed different frontend frameworks, so for
this section, we are going to try to use Vue to build our frontend. In this
section, we will look at writing our UI in Vue and discuss how we migrate
the login page to Vue. This section will not teach you how to use Vue but
rather will look at the way we use Vue to write the frontend components for
our sample application.

Application and components

When writing software using Vue, the application will start up by creating
an application instance. This instance is the main object in our Vue-based
application. Once we have an instance, then we can start using components.
Components are reusable Ul pieces that contain three parts — a template
(which is like HTML), styles, and JavaScript. Normally, when designing a
frontend, we think about HTML elements — div, href, and so on — but now
we need to think about components that contain all the different parts.
Figure 7.2 shows an example of the login page that we rewrite using Vue.

FullyStacked &
Login to your account

[AuEELEIES enter username

AL enter password
Login

Figure 7.2: Vue-based login

The concept of an application inside Vue can be thought of as a self-isolated
container containing different components that can share data. Any web
page can contain a number of applications displaying different kinds of
data, and even if they are isolated, they can also share data if and when
required.

Login page using Vue

In this section, we will look at how we use the login page as is without
converting it into a component and use it as a Vue application rendered by
the browser. We need to install the dependencies first by running the
following command:

npm install

This will install all the different dependencies, including the http-server
module, which we will be using to serve the login page. Start the server by
running the following command, making sure you are inside the
chapter7/login directory:

npm run start

You will see the output shown in Figure 7.3:

> test@l.f.0 start
> http-server ./ -p 3888

http://127.08.8.1:3008
http://192.168.1.3:3000
http://172.17.08.1:3086

Hit CTRL-C to stop the server
.

Figure 7.3: Serving using http-server

Open your browser and type http://127.0.0.1:3000/login.html into the
address bar, and you will see the login page.

Let’s dig through the code and see how it works together. The following
snippet inside login.html shows the application initialization code:

<script type="module">
import {createApp} from 'vue'
const app = createApp({
data() {
return {
loginText: 'Login to your account',

}
iy
methods: {
handleSubmit: function () {

}

}) .mount ('#app')
</script>

The code imports createApp from the Vue library and uses it to create an
application that contains data() and methods used inside the page. The
data() block declares the variables that will be used inside the page while
methods contains functions used. The application is mounted into the
element with the ID “app” app, in this case, the <div> with id=app.

The following code snippet shows the part of the page that uses the data:

<body class='"bg-gray-900">

<p class="text-xs text-gray-50">{{ loginText
}}</p>

<p class="text-xs text-gray-50">
{{ emailText }}</p>

<p class="text-xs font-bold text-white">
{{ passwordText }}</p>

</body>

The variable inside the curly brackets ({{}}) will be populated with the data
defined previously when we initialize the application.

The following code snippet shows the part of the page that uses the
handleSubmit function:

<body class="bg-gray-900">

<button @click="handleSubmit"
class="px-4 pt-2 pb-2.5 w-full
rounded-1g bg-red-500
hover:bg-red-600">

</body>

@click on the button element will trigger the function that was defined
when creating the Vue application object, which will write to the console
log the data in the username field.

Using Vite

Referring back to Figure 7.1, one of the parts of the build process is that of
the bundler. In this section, we will look at Vite, which is a bundler for Vue.
What is a bundler? It is a build tool that combines all your different assets
(HTML, CSS, and so on) into one file, making it easy for distribution.

In the previous section, we linked to a CDN-hosted version of the Vue
runtime. In this section, we’ll be using Vite to build our application and
generate our bundled code.

Vite — French for “quick” — was built by the same team behind Vue itself
and was designed to provide a faster development experience with
extremely fast hot reload and combine it with a powerful build stage that
transpiles, minifies, and bundles your code into optimized static assets
ready for deployment. Refer back to Figure 7.1 to see all the stages used to
build SPAs.

In this section, we will look at writing our login page as a component and
using it as a Vue application rendered by the browser. The code can be seen
inside the chapter7/npmvue folder.

Open your terminal and run the following commands:

npm install
npm run dev

Once the server is up and running, you will get the output shown in Figure
7.4.

» Local: http:/flocalhost:30088/

> Network:

Figure 7.4: Vite server output

Open the browser and access the login page by entering
http://localhost:3000 into the address bar. Let’s investigate further and
look at how the code is structured. We will start by looking at the
index.html page, as shown in the following snippet:

<!DOCTYPE html>
<html lang="en">
<head>

</head>
<body>
<div id="app"></div>
<script type="module" src="/src/main.js"></script>

</body>
</html>

The preceding index.html references the main.js script, which is how we
inject the Vue initialization code.

The <div. .> declaration is where the application will be mounted when
rendered in the browser, and the page also includes a script found in
src/main.js.

main.js contains the Vue application initialization code, as shown:

import { createApp } from 'vue'
import App from './App.vue'
createApp(App) .mount('#app')

createApp will create an application using the App object imported from
App . vue, which will be the starting component for our application. Vue-
related code is normally stored inside a file with the .vue extension. The
App . vue file acts as an app container that hosts the components that it will
use. In this case, it will use the Login component, as shown in the following
snippet:

<script setup>
import Login from './components/Login.vue'
</script>
<template>
<Login />
</template>

The <script setup> tag is known as the Composition API, which is a set
of APIs that allows Vue components to be imported. In our case, we are
importing the components from the Login.vue file.

The code imports the Login.Vue file as a component and uses it inside the
<template> block. Looking at the Login.vue file, you will see that it
contains the HTML elements to create the login page.

The Login.vue snippet can be seen in the following code block:

<script>
export default {
data() {
return {
loginText: 'Login to your account',

}

iy
methods: {

handleSubmit: function () {

}
}

}

</script>

<style>

@import "../assets/minified.css";
</style>

<template>

<button @click="handleSubmit"
class="px-4 pt-2 pb-2.5 w-full rounded-1lg
bg-red-500 hover:bg-red-600">

</template>

The class used for the button in the preceding example is declared inside a
minified.css file inside the assets folder.

We have learned how to create apps using the Vue framework and wired all
the different components together. We also looked at how to use the Vite
tool to write a Vue-based application. In the next section, we will look at
routing requests to different Vue components.

Using Vue Router to move around

In this section, we will look at Vue Router and learn how to use it. Vue
Router helps in structuring the frontend code when designing a single-page
application (SPA). An SPA is a web application that is presented to the
user as a single HTML page, which makes it more responsive as the content
inside the HTML page is updated without refreshing the page. The SPA
requires the use of a router that will route to the different endpoints when
updating data from the backend.

Using a router allows easier mapping between the URL path and
components simulating page navigation. There are two types of routes that
can be configured using Vue Router — dynamic and static routes. Dynamic
routes are used when the URL path is dynamic based on some kind of data.
For example, in /users/:id, id in the path will be populated with a value,
which will be something such as /users/johnny or users/acme. Static
routes are routes that do not contain any dynamic data, for example, /users
or /orders.

In this section, we will look at static routes. The examples for this section
can be found in the chapter7/router folder. Run the following command
from the router folder to run the sample application:

npm install
npm run server

The command will run a server listening on port 8080. Open your browser
and enter http://localhost:8080 in the address bar. You will see the
output shown in Figure 7.5:

Figure 7.5: Router sample application

The App . vue file contains the Vue Router information, which can be seen as
follows:

<template>
<div id="routerdiv'">
<table>

<router-1link :to="{ name: 'Home'}">Home
</router-1link>

<router-link :to="{ name: 'Login'}">Login
</router-link>

</table>

<router-view></router-view>

</div>
</template>

The preceding router -1ink route is defined inside router/index. js, as
shown:

const routes = [

{
path: '/',
name: 'Home',
component: Home
I
{
path: '/login',
name: 'Login',
component: Login
I

1;

The <router-1link/> tag defines the router configuration that the
application has, and in our case, this is pointing to the Home and Login
components declared inside the index. js file under the router folder, as
shown:

import Vue from 'vue';

import { createRouter, createWebHashHistory } from 'vue-
router'

import Home from '../views/Home.vue';

import Login from "../views/Login.vue";
Vue.use(VueRouter);

const routes = [

{
path: '/',
name: 'Home',
component: Home
I
{
path: '/login',
name: 'Login',
component: Login
iy

17

const router = createRouter({
history: createWebHashHistory(),
base: process.env.BASE_URL,
routes

1)

export default router

Each of the defined routes is mapped to its respective components, which
are the Home and Login components, which can be found inside the views
folder.

Routing the login page

We know that the /1ogin path is mapped to the Login component, which is
the same component that we looked at in the previous section, Login page
using Vue. The difference in the router example is in the way the script is
defined, as shown:

<template>

</template>
<script type="module'">
export default {
data() {
return {
loginText: 'Login to your account',
emailText: 'Email Address',
passwordText: 'Password',
username: 'enter username',
password: 'enter password',
iy
I
methods: {
handleSubmit: function () {
console.log(this.$data.username)
b

}
+;

</script>

Unlike in the previous section, the Vue initialization code has been moved
into main. js, as shown:

ééﬁst myApp = createApp(App)

myApp.use(router)
myApp.mount ('#app')

In this section, we looked at how to restructure the application to work as a
SPA by using Vue Router.

Summary

In this chapter, we learned about Vue and how to structure our frontend to
make it easy to transition into components and applications. We looked at
the different frontend frameworks and discussed what each of them
provides.

We looked at how components and applications work together when writing
a Vue-based web page. We tested what we learned by migrating the login
page that we created as a simple HTML page to a Vue-based application.
Lastly, we learned about Vue Router and how to use it to make it easier to
route to different parts of a SPA.

Taking on board all this learning, in the next chapter, we will look at writing
our application as a Vue- based application that will communicate with the
REST API that we have built.

Frontend Libraries

In the previous chapter, we looked at different frameworks for building
frontend applications. In this chapter, we will look at the different frontend
libraries that are useful for building web applications. Frontend libraries are
predefined functions and classes that can help speed up the development
time when building frontend applications by providing functionality we’d
otherwise have to build and develop ourselves. In this chapter, we will be
looking at the following libraries:

Vuetify
Buefy
Vuelidate

Cleave.js
Having completed this chapter, you will have explored the following:

Validating data with Vuelidate
Better input handling with Cleave. js

Working with different UT components using Vuetify

Technical requirements

All the source code explained in this chapter can be checked out at
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-
Go/tree/main/Chapter08.

Make sure you have all the necessary tools installed on your local machine
by following the instructions from the node. js documentation available

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter08
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm

In this chapter, there will be sample code that is shared using
codesandbox.io and jsfiddle.net, which will make it easier for you to
experiment with.

Let’s begin our journey by looking into Vuetify in the next section.

Understanding Vuetify

In Chapter 7, Frontend Frameworks, we learned about the Vue framework,
which is a rich frontend framework that allows frontend code to be
extended and maintained easily. Vuetify (https://vuetifyjs.com) provides a
lot of user interface components out of the box, ready to be used by
applications. The framework also allows developers to style the user
interfaces to their needs.

In this section, we will learn about Vuetify, which is a Material-based
design framework that is built on top of Vue. Material is the Design
Language made popular by Google across their web apps and Android
applications — you can find out more at https://m3.material.io/ —and is a
very popular choice.

Setting up Vuetify

We are going to take a look at the example code inside the
chapter08/vuetify/components directory. The example code
demonstrates how to use the vuetify framework. Before running the
sample code, make sure you run the following command from inside the
chapter08/vuetify/components directory to install all the necessary
components:

npm install

Once the installation is complete, run the sample code using the following
command:

http://codesandbox.io/
http://jsfiddle.net/
https://vuetifyjs.com/
https://m3.material.io/

npx vue-cli-service serve

Once the server is up and running, you will get an output as shown in
Figure 8.1:

DONE Compiled successfully in 7784ms

App running at:
- Local: http://localhost:8888/
- Network: http://192.168.1.5:8088/

Note that the development build is not optimized.

To create a production build, run npm run build.

Figure 8.1: Output from running npx

You can access the application using the URL specified in the output — for
example, http://localhost:8080. Figure 8.2 shows the output of the
application:

- FANORITESHP MEARDY @
.
=y 2 C

55 a [+ 1

L,
M
Bl
il

Coboer Pichod

Figure 8.2: Output from the sample app

The sample app displays the different components that are available inside
Vuetify. As you can see, there are components available for radio button
groups and color pickers, among many others.

In the next section, we will look at how we use Vuetify in the sample app
and how things are wired up together.

Using UI components

There are many components provided with Vuetify but in this section, we
will just talk about a few of them to get an idea of how to use them. The
example code uses components such as a color picker, button, badge, and so
on.

Figure 8.3 shows the directory structure of the example. All of the source
files are inside the src/ folder:

v components
node_modules
public
& Index.html
src

plugins
isn Vuetify Js
¥ Appvue
isw MAIN.Js
4 package.json
¢y package-lock.json

Figure 8.3: The directory structure of a Vuetify sample app

The main. js host code for initializing Vue and Vuetify is shown in the
following snippet:

import Vue from 'vue'

import App from './App.vue'

import vuetify from './plugins/vuetify';
Vue.config.productionTip = false

new Vue({

vuetify,
render: h => h(App)
}) .$mount ('#app')

The code looks like any other Vue-based application except it adds the
Vuetify framework, which is imported from the plugins/vuetify directory,
as shown in this snippet:

import Vue from 'vue';

import Vuetify from 'vuetify/lib/framework';
Vue.use(Vuetify);

export default new Vuetify({});

Vuetify is initialized in the code as a plugin using the vue.use() function
call and exported to be made available to other parts of the code.

Now that the initialization is out of the way, let’s take a look at how the
sample is using the Vuetify components. The code snippet here from

App . vue shows how the sample code uses the Color Picker component of
Vuetify:

<template>
<v-app>
<v-contalner>

<V-row>
<v-col>
Color Picker
</v-col>
<v-col>
<v-color-picker/>
</v-col>
</Vv-row>
</v-container>
</v-app>
</template>

The tags that can be seen in the snippet — <v-row>, <v-col>, <v-
container>, and so on — are all Vuetify components. The components can
be configured through the available properties; for example, if we look at

https://vuetifyjs.com/en/api/v-row/#props

for <v-row>, we can see that we can set different parameters, such as
alignment.

In this section, we learned about Vuetify and how to use the components
provided, and also how to wire things together to use it in a Vue-based
application. In the next section, we will look at different user interface
libraries that are more lightweight compared to Vuetify. We will start by
looking at Buefy in the next section.

Understanding Buefy

Buefy is another user interface framework that is built on top of Bulma.
Bulma (https://bulma.io/) is an open source CSS project that provides
different kinds of styles for HTML elements; the CSS file can be viewed at
the following link:
https://github.com/jgthms/bulma/blob/master/css/bulma.css.

Let’s take a quick look at an example web page that uses Bulma CSS. This
will give us a better idea of what Bulma is all about and also give us a better
understanding of how Buefy is using it.

Bulma sample

Open the sample chapter®8/bulma/bulma_sample.html file in your
browser, and the HTML page will look like Figure 8.4:

https://bulma.io/
https://github.com/jgthms/bulma/blob/master/css/bulma.css

Hello Bulma!

Congratulations!

The page background sheeld turn green

Type C55 class

Codumns columns colam

Layout t sar o

Elementi i £ o | S |

Form tield cantral

Helpers hat-Bestscontered Bat:Beal-weighl-weedbald

bin e

Figure 8.4: Bulma example page

The following code snippet shows the Bulma CSS file used in the web
page:

<head>

<link rel="stylesheet" href=
"https://cdn.jsdelivr.net/npm/bulma@0.9.3/css/
bulma.min.css">
</head>

The web page uses different HTML elements tags styled using the Bulma
CSS, as seen in the following code snippet:

<section class="hero is-medium is-primary'">
<div class="hero-body">
<div class="container">
<div class="columns'">

</div>
</div>
</div>
</section>
<section class="section">
<div class="container">

<div class="columns">
<div class="column is-8-desktop
is-offset-2-desktop">
<div class="content">

</div>

</div>
</div>
</div>
</section>

Now that we have an idea about what Bulma is and how to use it for a web
page, we will take a look at setting up Buefy in the next section.

Setting up Buefy
We are going to look at the Buefy example that is found inside the
chapter8/buefy directory. Make sure you are inside the directory and run

the following command:

npm install
npx vue-cli-service serve

Open the server in your browser and you will see output like Figure 8.5:

==
Subtitle

Figure 8.5: Buefy sample output

Ul components

The web page displays different components available in Buefy, such as a
slider, a clickable button with a dropdown, and a breadcrumb.

Initializing Buefy is the same as initializing any other Vue plugin. It looks
the same as what we went through in the previous section when we looked
at Vuetify. The code will initialize Vue by using Buefy as stated in the
Vue.use(Buefy) code:

import Vue from 'vue'
import App from './App.vue'
import Buefy from "buefy";
Vue.use(Buefy);
new Vue({

render: h => h(App)
}) . $mount ('#app')

One of the components that we are using in our sample app is carousel,
which displays a user interface like a slideshow. To create carousel, it is
just a few lines of code, as shown in the following code snippet, using the
<b-carousel> tag:

<!--example from https://buefy.org/documentation-->
<template>
<section>
<div class="container">
<b-carousel>
<b-carousel-item v-for="(carousel, i) in carousels"
: key:llill>
<section :class=""hero is-medium
is-${carousel.color} ">
<div class="hero-body has-text-centered">
<hl class="title">{{ carousel.text }}</h1>
</div>
</section>
</b-carousel-item>
</b-carousel>
</div>

</section>
</template>

Like carousel, there are many different pre-built components available in
Buefy that can help design complex user interfaces.

In the next section, we will look at how we can use the Vuelidate library as
a way to perform validation on the data we capture and present in our user
interface to ensure we interpret our customers’ data correctly.

Validating data entry with
Vuelidate

If your app does anything interactive, it’s likely that it will handle user-
entered data, which means you must check whether what the users are
providing is valid input.

Input validation libraries can be used to ensure only valid data is entered by
the user and provide feedback as soon as data is received. This means we’re
validating as soon our user hits that input field!

We’re going to explore HTML form validation in the frontend and the
difference between input and value validation. It’s also important to note
that no matter the validation in the frontend, it’s no substitute for validation
in the backend and of the API endpoints. Our goal in the frontend is to
prevent the user from making errors; however, you’ll never stop bad guys
from submitting bad data to your app.

We can look at frontend validation through two lenses, as there’s a myriad
of solutions out there, but we’ll contrast two options and show a working
solution — the first is that of validating input, and the other is the validation
of values.

If we only want to validate the input, we could use the vee-validate
library, which works by having you write the rules inside the <template> of
your code. For example, see the following:

<script>
Vue.use(VeeValidate);
var app = new Vue({
el: '#app',
data: {
email: '',
iy
methods: {
onSubmit: function(scope) {
this.errors.clear(scope);
this.$validator.validateAll(scope);

}
}
1)
</script>
<template>
<div>
<form v-on:submit.prevent="onSubmit('scope')">
<div>
<div v-for="error in errors.all('scope')">
{{error}}
</div>
</div>
<div>
<label>Email Address</label>
<input type="text" v-model="email"
name="Email Address" v-validate data-scope="scope"
data-rules="required|min:6|email">
</div>
<div>
<button type="submit'">
Send
</button>
</div>
</form>

<div class="debug">
email: {{email}}

</div>
</div>
</template>

This inline validation — wherein we perform validateAll() on submitting
data — will allow us to validate the contents of the data using predefined
rules, such as a field being required, its minimum length, or that it must be a

valid email ID, for example. If invalid data is entered, we can iterate
through the errors and present them to the user:

The Email Address must be at least 6 characters.
The Email Address must be a valid email.

Email Address

nick

' Send

email: nick

Figure 8.6: Validation error message

You can see this on the JS Playground website JSFiddle at the following
link: https://jsfiddle.net/vteudms5/.

This is useful for simple validation, but when we want to add additional
logic against values and collections of values, rather than just individual
inputs, this is where libraries such as Vuelidate become powerful.

With Vuelidate, you’ll notice that the validation is decoupled from the
template code we write, unlike the inline validation done in the vee-
validate example. This allows us to write the rules against the data model
rather than the inputs in our template.

In Vuelidate, the validation results in a validation object referenced as
this.$v, which we can use to validate our model state. Let’s rebuild our
previous example to demonstrate how we going to use Vuelidate to validate

<script>
Vue.use(window.vuelidate.default)
const { required, minLength,email } = window.validators
new Vue({
el: "#app",
data: {
text: "'
I

validations: {
text: {
required,

https://jsfiddle.net/vteudms5/
https://jsfiddle.net/34gr7vq0/3/

email,
minLength: minLength(2)

}
I
methods: {
status(validation) {
return {
error: validation.$error,
dirty: validation.$dirty
}
}
}
1)
</script>
<template>
<div>
<form>
<div>
<label>Email Address</label>
<input v-model="$v.text.$model"
:class="status($v.text)">
<pre>{{ $v }}</pre>
<div>
</form>
</div>
</template>

The resulting output shows us the $v object. The required, email, and
minLength fields are firing when you type in the box. In our example, when
we type in nick@bar.com, the fields change value:

mailto:nick@bar.com

[nick@bar.com|]

{
"text™: {
“reguired”: true,
"email®: true,
"minLength™: true,
"Smodel”: "nickébar.com”,
"Sinvalid®: false,
"§dirty”: true,
“SanyDirty": true,
"Serror”: false,
"$anyError®: false,
“Spending”: false,
"Sparama”: {
"required”: {

"type": “required"”
“"email®: {
"type": “email”

¥
"minLength™: {
"type": “"minLength"”,
"min®: 2
}
}
}e
"Smodel”: null,
“Sinvalid”: false,
"sdirty": true,
"SanyDirty": true,
"Serror : false,
"SanyError~: false,
“$pending”: false,
"S$params”: {
"taxt": null
}
}

Figure 8.7: Illustration of the browser output from our JSFiddle sample

Although similar to the vee-validate implementation in style, by utilizing
the $v object concept and allowing that to be the source of validation, we
can connect it to additional inputs across multiple forms and validate the
entire collection. For example, if we had multiple fields, such as a name,
email, users, and tags across formA and formB, we would be able to create
the validation as follows:

validations: {
name: { alpha },
email: { required, email }
users: {

minLength: minLength(2)

I
tags: {

maxLength: maxLength(5)
iy

formA: ['name', 'email'],
formB: ['users', 'tags']

There’s a large collection of available validators for Vuelidate that we can
import. This gives us access to validators such as conditionally required
fields; length validators; email, alpha/alphanum, regex, decimal, integer,
and URL options; and many more that are accessible by importing the
validators library:

import { required, maxLength, email } from
'@vuelidate/validators'

The full list is available on the Vuelidate website at https://vuelidate-
next.netlify.app/validators.html.

Better input handling with
Cleave.JS

As we’ve just seen, getting data from your users in the right shape and form
can be a challenge — be it a date in a YYYY/MM format, a phone number
with a prefix, or other more structured input types.

We looked at validation previously, but you can further help your users by
providing visual clues and feedback as they type to prevent them from
reaching the end with validation errors — libraries such as those provided by
the popular credit card and online payments processor. Stripe does a great
job at helping users enter their credit card info correctly, but for those of us
on a budget, we can use Cleave. js for a similar experience.

https://vuelidate-next.netlify.app/validators.html

3412 212112 21

Figure 8.7: Credit card validation (image from
https://nosir.github.io/cleave.js/)

Frustratingly, Vue isn’t supported as a first-class citizen but there’s no
reason we can’t set up the directive, which is available at codesandbox.io
here — https://bit.ly/3Ntvv27. Figure 8.8 shows how the validation will
work for codesandbox.io:

14242 4222 4242 4244 |
4242 4222 4242 4244 visa

Figure 8.8: Example of our Cleave.js example on codesandbox.io

It’s not as pretty in my hardcoded sample (the CSS is left as an exercise for
you!) but the key part from the sandbox sample is how we overload
custom-input with our cleave directive by doing the following:

<template>
<div id="app">
<div>

<custom-input
v-cleave="{ creditCard: true,
onCreditCardTypeChanged: cardChanged, }"
v-model="ccNumber" />

</div>

<pre>

{{ ccNumber }}

{{ cardType }}

http://codesandbox.io/
https://bit.ly/3Ntvv27
http://codesandbox.io/

</pre>
</template>

In the future, it would be great to see Cleave.js incorporate a first-party
implementation for Vue but until then, a number of npm packages exist to
skip over the setup for our sample and provide a similar effect that will
allow us to create beautiful experiences for our users.

To follow the status of Cleave.js official support, you can check out
https://github.com/nosir/cleave.js/blob/master/doc/vue.md.

With Cleave.js, we have reached the end of this chapter.

Summary

In this chapter, we learned about several frontend libraries and tools to help
us to iterate through code and design faster when building the frontend user
interface for our product.

We’ve looked at using Vuetify to create customizable user interfaces, and
looked at Buefy, which provides a huge collection of UI components to
allow us to build our apps rapidly.

We then finished up by providing an introduction to and contrast between
input and value validation using Vuelidate and VeeValidate, respectively,
and finally, explained how we can use Cleave.js to create smarter interfaces
to help our users understand what our app expects.

In the next chapter, we will look at middleware pieces that will form the
bridge between the frontend and the backend.

https://github.com/nosir/cleave.js/blob/master/doc/vue.md

Tailwind, Middleware, and CORS

In this chapter, we will build on the frontend principles we introduced
previously by introducing Tailwind CSS, explore how we can consume our
backend services via an API from our frontend app, see how we can
leverage middleware to transform our JSON requests, and look at how we
can provide a secure Single-Page App (SPA) with a user login.

In this chapter, we’ll cover the following topics:

Creating and designing frontend applications using the Tailwind CSS
framework

Getting an understanding of how to use the Vite CLI to create new Vue
applications

Configuring our Go service for CORS
Setting up a JavaScript Axios library

Creating middleware to manage JSON formatting between the
frontend and the backend

Technical requirements

All the source code explained in this chapter can be checked out at
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-
Go/tree/main/Chapter09.

Introducing Tailwind

In the previous chapter, we looked at a number of different frontend
frameworks to help us go faster, but we’ve been ignoring an elephant in the
room of a modern web ecosystem — Tailwind CSS.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter09

Frameworks such as Buefy and Vuetify have a major disadvantage. Due to
increasing demand for more and more features, growth, and usage, they
became a victim of their own success and ended up too big, giving us less
control over our component styles.

Learning about frameworks such as Buefy has become increasingly
challenging. Developers have to learn about hundreds of classes and
components and then potentially rebuild them just for small style tweaks
that were simply not envisioned by the upstream community.

Tailwind is a CSS framework that, unlike other frameworks, does not come
prebuilt with classes to add to HTML tags. Instead, it uses a different
approach. It brings a much lower level of control by removing ALL default
styling from the stylesheet and using utility-based classes to compose and
build your app. These utility-based classes provide ways to directly
manipulate certain CSS attributes individually, such as text size, margins,
spacing, padding, and colors, as well as behavior for mobile, desktop, and
other viewports. By applying different tailwind modifiers, we have granular
control over the final appearance of an element while ensuring consistent
styling and an easy escape route if we need to build slight variations. This
really helps in building our Vue components.

Button

Figure 9.1: A button sample

A quick example of creating a blue button can be seen with the following:

<button type="button" class="

inline-block px-6 py-2.5 bg-blue-600
text-white font-medium text-lg leading-tight
rounded shadow-md

hover:bg-blue-700 hover:shadow-1lg
focus:bg-blue-700 focus:shadow-1g

focus:outline-none focus:ring-0
active:bg-blue-800 active:shadow-1g
transition duration-150 ease-in-out
">Button</button>

You may be saying to yourself, “Wow, that’s a lot of CSS for a button,” but
when you consider how Vue helps us build reusable Single-File
Components (SFCs), we would only need to style this once, and all of our
components would share that same utility-based CSS approach — whether
it’s a button, 1ink, image, div, or paragraph. You can check the official
docs at https://tailwindcss.com/docs/utility-first to dive further into the
concepts behind “utility-first” CSS and what the individual classes do.

Creating a new Tailwind and Vite
project

To create our project, we’re going to first generate it with the vite CLI.
This will give us the familiar “Hello world” output you see here:

Hello Vue 3 + Vite

Recommended IDE setup: VYSCode + Volar
latior |I 2 3 Uocumentation

count is: 0

Edit conponent s/HelloWorld. vue 10 test hot module replacement.

Figure 9.2: Hello World web output

https://tailwindcss.com/docs/utility-first

Let’s create a new Vue project with Vite using the following command:

npm create vite@latest

For each of the questions asked, enter the information shown here:

v Project name: .. vue-frontend

v Select a framework: > vue

v Select a variant: > vue
Scaffolding project in /Users/.../vue-frontend...
Done. Now run:

cd vue-frontend

npm install

npm run dev

npm install

npm run dev

vue-frontend@0.0.0 dev

vite

vite v2.9.12 dev server running at:
> Local: http://localhost:3000/

> Network: use "--host™ to expose
ready in 332ms.

V V & &#

Going to http://localhost:3000 will now show the screenshot from
Figure 9.2. Our project is enabled with “hot reload” or “live reload” so as
you change the project code, you will be able to see the design in the
browser update when you save the file.

Previous versions of Tailwind CSS had a bit of a reputation for generating
large stylesheets (between 3 and 15 MB!) and slowing down build times.

At the end of the Tailwind CSS version 2 era, the team introduced a new
Just-In-Time (JIT) compiler that automatically generates only the
necessary CSS required to style your design. This was originally available
as an optional plugin but brought massive improvements by reducing bloat,
and with JIT, the CSS in development is the same as your final code, which
meant no post-processing of the CSS is required for your final builds. Since
Tailwind CSS version 3 and above, the JIT compiler has been enabled by
default when we install Tailwind CSS, so we don’t have to worry about

altering anything in our config file other than what is needed to lay out our
project.

We’re going to now add Tailwind CSS to our project and make some
changes to the default Vue Hello World output provided by the scaffolding
from both the Vue and Tailwind packages:

$ npm install -D tailwindcss postcss autoprefixer
$ npx tailwindcss init -p
Created Tailwind CSS config file: tailwind.config.js
Created PostCSS config file: postcss.config.js
$ cat << EOF > tailwind.config.js
/** @type {import('tailwindcss').Config} */
module.exports = {
content: [
"./index.html",
"./src/**/*.{vue, js}",

1
theme: {
extend: {},
3
plugins: [],
}
EOF

$ cat << EOF > ./src/tailwind.css
@tailwind base;

@tailwind components;

@tailwind utilities;

EOF

$ cat << EOF > ./src/main.js
import { createApp } from 'vue'
import App from './App.vue'
import './tailwind.css'
createApp(App) .mount ('#app')
EOF

The directives beginning with @tailwind in the tailwind.css file are part
of how we tell the JIT compiler what to apply to generate the CSS — we will
only leverage the base, component and utility directives and refer you to the
Tailwind CSS official docs for more on this —
https://tailwindcss.com/docs/functions-and-directives.

https://tailwindcss.com/docs/functions-and-directives

We can now open up our HellowWorld.vue file and replace the contents with
the following to create our button. The cool part with our dev server still
running is that you should be able to see the changes in real time if you save
your file as you manipulate the button classes:

<template>
<div class="flex space-x-2 justify-center'">
<button
@click="count++"
type="button"
class="inline-block px-6 py-2.5 bg-blue-600
text-white font-medium text-1g leading-tight
normal-case rounded shadow-md hover:bg-blue-
700 hover:shadow-1g focus:bg-blue-700
focus:shadow-1g focus:outline-none
focus:ring-0 active:bg-blue-800
active:shadow-1lg transition duration-150
ease-in-out"
>
Click me - my count is {{ count }}
</button>
</div>
</template>

You should end up with something like this:

Click me - my count is 3

Figure 9.3: The Click me button

Congratulations! You’ve created your first Tailwind and Vite project. You
can see the complete example inside the chapter9/tailwind-vite-demo
folder.

In the next section, we will look at how to use the API that we developed in
Golang from our frontend.

Consuming your Golang APIs

We’re going to build on our previous frontend example to add some
functions to GET and POST from a simple backend service. The source code
can be found inside the chapter9/backend folder; it focuses on two
simplified functions that do little more than return a fixed string for GET and
a reversed string based on the POST request that we sent.

The appGET() function provides the functionality to perform a GET
operation, while the appP0ST() function provides it for a POST operation:

func appGET() http.HandlerFunc {
type ResponseBody struct {
Message string
}

return func(rw http.ResponseWriter, req *http.Request) {
log.Println("GET", req)
json.NewEncoder (rw).Encode(ResponseBody{
Message: "Hello World",

1)
}
}
func appPOST() http.HandlerFunc {

type RequestBody struct {
Inbound string
}

type ResponseBody struct {
OutBound string
}

return func(rw http.ResponseWriter, req *http.Request) {

log.Println("POST", req)

var rb RequestBody

if err := json.NewDecoder(req.Body).Decode(&rb);

err !'=nil {
log.Println("apiAdminPatchUser: Decode
failed:", err)

rw.WriteHeader (http.StatusBadRequest)
return

¥

log.Println("We received an inbound value of",

rb.Inbound)

json.NewEncoder (rw).Encode(ResponseBody{

OutBound: stringutil.Reverse(rb.Inbound),

1)

We’ll start our service by using go run server.go, with a view to
consuming this data from our frontend application.

We’re going to create two utility functions in our frontend app to allow us
to interact with our frontend app, and we’re going to be building these on
top of Axios. Axios is a Promise-based HTTP client for the browser that
abstracts all the browser-specific code needed to interact with backend
services and does an incredible job in providing a single interface for web
requests across all browsers , which you can read more about at the official
docs here: https://axios-http.com/.

We’re going to first install axios, then set up our Axios instance, and then
we can layer on functionality:

$ npm install axios

With axios installed, you’ll now want to create a 1ib/api.js file
containing the following:

import axios from 'axios';
// Create our "axios" object and export
// to the general namespace. This lets us call it as
// api.post(), api.get() etc
export default axios.create({
baseURL: import.meta.env.VITE_BASE_API_URL,
withCredentials: true,

1):

There’s a couple of interesting things to note here; the first is the baseURL
value, and the second is withCredentials.

The baseURL value is what Axios uses to build all subsequent requests on
top of. If we called axios.Patch('/foo') with a baseURL value of
https://www.packtpub.com/, it would perform a PATCH call to

https://axios-http.com/
https://www.packtpub.com/

https://www.packtpub.com/foo. This is a great way to switch between
development and production and ensure you reduce typos.

But what are we doing with import.meta.env? This is partly how Vite
imports and exposes environment variables. We’re going to add our
VITE_BASE_API_URL to a .env file situated at the base of our project
containing the following:

VITE_BASE_API_URL="http://0.0.0.0:8000"

Combined with this and our new 1ib/api.js file, we can now call
axios.Put('/test') from our code, and by default, it will reference
http://0.0.0.0:8000/test. You can see more about how Vite handles
environment variables and more at https://vitejs.dev/guide/env-and-
mode.html.

The other part to note is the withCredentials property. This value
indicates whether or not cross-site access control requests should be made
using credentials such as cookies and authorization headers.

The reason we want this property is that we want all our cookie settings to
be consistent, but we’ll need to ensure our backend app understands it,
which we’ll cover shortly. Setting withCredentials has no effect on same-
site requests.

Now that we’ve used this to instantiate our axios instance, we can leverage
this by creating our own api/demo. js file inside our frontend application’s
src folder. It’s not a very original name but it works for us:

import api from '@/1lib/api’';

export function getFromServer() {
return api.get(/°);

}

export function postToServer(data) {
return api.post(/ , data);
¥

https://www.packtpub.com/foo
https://vitejs.dev/guide/env-and-mode.html

This code exports two functions called getFromServer and postToServer,
with an additional data parameter being sent as the POST body on the latter
function.

A neat trick here is the usage of the @ import — this is common in a lot of
setups to allow us to quickly specify the base path for our code to keep
things clean and remove relative/absolute pathing with lots of . ./. .
referenced everywhere. If you forget this, you’ll see errors such as this:

12:23:46 [vite] Internal server error: Failed to resolve
import "@/api/demo" from "src/components/HellowWorld.vue".
Does the file exist?
Plugin: vite:import-analysis
File: /Users/nickglynn/Projects/Becoming-a-Full-Stack-Go-
Developer/chapter 9/frontend/src/components/
HellowWorld.vue

1 | dimport { ref } from 'vue';
2 | import * as demoAPI from '@/api/demo’;
| A
3 |
4 | // Sample to show how we can inspect mode

Not great! To fix this, open up your vite.config. js file and replace the
contents with the following:

import { defineConfig } from 'vite'
import vue from '@vitejs/plugin-vue'
import path from 'path';
// https://vitejs.dev/config/
export default defineConfig({
plugins: [vue()],
// Add the '@' resolver

resolve: {
alias: {
'@': path.resolve(__dirname, 'src'),
I
iy

1)

I’ve bolded the key parts that we’re adding. We’re telling Vite to use the @
symbol as an alias so that when we use @ in a path, it calls path.resolve()
to resolve the path segments into an absolute path.

With all of this now set up, we’re going to open up our Helloworld.vue
and update it, the goal being to create something that looks like Figure 9.4

Click to Get
Click to Post

You are in development mode

Your AP is at http://0.0.0.0:8000/

Figure 9.4: The Ul for GET and POST

Here is the full code for Helloworld. vue:

<script setup>
import { ref } from 'vue';
import * as demoAPI from '@/api/demo’';
// Sample to show how we can inspect mode
// and import env variables
const deploymentMode = import.meta.env.MODE;
const myBaseURL = import.meta.env.VITE_BASE_API_URL;
async function getData() {
const { data } = await demoAPI.getFromServer ()
result.value.push(data.Message)
}
async function postData() {
const { data } = await demoAPI.postToServer({ Inbound:
msg. value })
result.value.push(data.OutBound)
}
const result = ref([])
const msg = ref("")
defineProps({
sampleProp: String,
3);
</script>
<template>
<div class="flex space-2 justify-center">
<button
@click="getData()"
type="button"

class="inline-block px-6 py-2.5 bg-blue-600
text-white font-medium text-1g leading-tight
normal-case rounded shadow-md hover:bg-blue-
700 hover:shadow-1g focus:bg-blue-700
focus:shadow-1g focus:outline-none
focus:ring-0 active:bg-blue-800
active:shadow-1lg transition
duration-150 ease-in-out"
>
Click to Get
</button>
</div>
<div class="flex mt-4 space-2 justify-center'">
<input type="text"
class="inline-block px-6 py-2.5 text-blue-600
font-medium text-1g leading-tight
rounded shadow-md border-2 border-solid
border-black focus:shadow-1g focus:ring-1 "
v-model="msg" />
<button
@click="postData()"
type="button"
class="inline-block px-6 py-2.5 bg-blue-600
text-white font-medium text-1lg leading-tight
normal-case rounded shadow-md hover:bg-blue-
700 hover:shadow-1g focus:bg-blue-700
focus:shadow-1g focus:outline-none
focus:ring-0 active:bg-blue-800
active:shadow-1lg transition
duration-150 ease-in-out"
>
Click to Post
</button>
</div>
<p>You are in {{ deploymentMode }} mode</p>
<p>Your API is at {{ myBaseURL }}</p>
<li v-for="(r, index) in result">
{{r}}
</1i>
</template>
<style scoped></style>

The parts in bold are the most interesting parts. These show how we can use
GET and POST with our data, using our libraries and API calls from the
backend server that we set up, as well as how we can bind the data and
reference it in our Vue modules.

Hopefully, after making all these changes, your Vite instance is still
running; if not, start it with npm run dev, and you should get the screenshot
from Figure 9.4. Click the Click to Get button and enter some data to send
via the Click to post button.

Figure 9.5: Peeking into the HTTP traffic

It doesn’t work! We’re so close, but first, we have to revisit CORS from one
of our previous chapters.

CORS for secure applications

In Chapter 6, Moving to API-First, we introduced the CORS middleware
for our backend. We’ve now got to update our new backend service. It will
need to respond to OPTION preflight requests, as we discussed in Chapter 6,
Moving to API-First, and will also need to identify the URLs that we’re
going to allow to talk to our service. This is necessary to ensure our
browsers aren’t being tricked into submitting/modifying applications from
other sources.

Open up the backend/server.go sample you’ve been running and review
the main function:

port := ":8000"

rtr := mux.NewRouter()

rtr.Handle("/", appGET()).Methods(http.MethodGet)
rtr.Handle("/", appPOST()).Methods(http.MethodPost,

http.MethodOptions)
// Apply the CORS middleware to our top-level router,
with // the defaults.
rtr.Use(
handlers.CORS(
handlers.AllowedHeaders(
[1string{"X-Requested-With", "Origin",
"Content-Type", }),
handlers.AllowedOrigins([]string{
"http://0.0.0.0:3000",
"http://localhost:3000"}),
handlers.AllowCredentials(),
handlers.AllowedMethods([]string{
http.MethodGet,
http.MethodPost,

).
)

log.Printf("Listening on http://0.0.0.0%s/", port)
http.ListenAndServe(port, rtr)

As before, I’ve put the key parts in bold. You can see we’ve appended
http.MethodOptions to our POST handler, and we’ve also layered in some
additional middleware.

AllowedHeaders has been included, and we’re specifically accepting
Content-Type as, by default, we won’t accept JSON — only
application/x-www-form-urlencoded, multipart/form-data, Or
text/plain are accepted.

We also use AllowCredentials to specify that the user agent may pass
authentication details along with the request, and finally, we’re specifying
our dev server’s location, both for localhost and the 0.0.0.0 address. This
might be slight overkill but can help if your backend and frontend start
differently.

For a production-ready version of our project, you will want to inject these
as environment variables to avoid mixing development and production
config files. If you leverage env.go from Chapter 6, Moving to API - First
— available at https://github.com/PacktPublishing/Full-Stack-Web-
Development-with-Go/blob/main/Chapter06/internal/env.go — you will do
something like the following:

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/blob/main/Chapter06/internal/env.go

rer.Use(
handlers.CORS(

handlers.AllowedHeaders(
env.GetAsSlice("ALLOWED_HEADERS")),

handlers.AllowedOrigins(
env.GetAsSlice("ORIGIN_WHITELIST")),

handlers.AllowCredentials(),

handlers.AllowedMethods([]string{
http.MethodGet,
http.MethodPost,

1)),

Once your server is configured correctly, (re)start both the backend and the
frontend, and you should now be able to call your backend service to use
GET and POST. You’ve now completed a full-stack project!

Click to Get
eMesreveR Click to Post

You are in development mode
Your APl is at http://0.0.0.0:8000/
* gnitset
e Hello World
o eMesreveR

e ReverseMe

Figure 9.6: Ul displaying output from the server

In this section, we looked at adding CORS functionality to our application,
allowing the frontend to access our API. In the next section, we will look at

exploring Vue middleware that will help to provide common data
transformation functionality.

Creating Vue middleware

Working with Vue (and Axios) and Golang, we’ve shown we can bring all
of learning so far all together, but we’ve missed one small aspect. We’ve
deliberately omitted the JSON struct tags from our Golang code. If we add
them back into our backend/server.go and rerun both the server and app,
our requests no longer work!

func appPOST() http.HandlerFunc {
type RequestBody struct {
InboundMsg string " json:"inbound_msg,omitempty""
}

type ResponseBody struct {
OutboundMsg string " json:"outbound_msg,omitempty""
b

Our frontend and backend can no longer communicate as the contract has
changed; the frontend is communicating in CamelCase, while the backend
is communicating in snake_case.

This isn’t a show-stopper, as we’ve proven we can work around it, but
sometimes we don’t have the luxury of telling the backend service what
format to use. Thankfully, Axios can be modified to add transformers to our
requests that will modify inbound and outbound requests to match
whichever backend formatting we’re given.

To build our transformers, we’ll install and use two new packages to help us
to create our transformers. These will be used to convert between the
different formats/case types:

$ npm install snakecase-keys camelcase-keys

Finally, we’ll modify our 1ib/api.js file to use these libraries to format
our payloads:

import axios from 'axios';
import camelCaseKeys from 'camelcase-keys';
import snakeCaseKeys from 'snakecase-keys';
function isObject(value) {
return typeof value === 'object' && value instanceof
Object;
}

export function transformSnakeCase(data) {
if (isObject(data) || Array.isArray(data)) {
return snakeCaseKeys(data, { deep: true });

}
if (typeof data === 'string') {
try {
const parsedString = JSON.parse(data);
const snakeCase = snakeCaseKeys(parsedString, { deep:
true });
return JSON.stringify(snakeCase);
} catch (error) {
// Bailout with no modification
return data;
}
}
return data;
}
export function transformCamelCase(data) {
if (isObject(data) || Array.isArray(data)) {
return camelCaseKeys(data, { deep: true });
}

return data;

}

export default axios.create({
baseURL: import.meta.env.VITE_BASE_API_URL,
withCredentials: true,
transformRequest: [...axios.defaults.transformRequest,
transformSnakeCase],
transformResponse: [...axios.defaults.transformResponse,
transformCamelCase],

+)i

This code might look like a lot, but it’s what we need to create our
transformers. We create a to function and a from function to add as
transformers to the Axios instantiation. We transform the requests into
snake_case on the outbound/request and transform them to CamelCase on
the inbound/response. If you want to dive into the specifics of creating
transformers for Axios, you can find more on the website at https://axios-

https://axios-http.com/docs/req_config

http.com/docs/req_config, which includes a look at all the other numerous
configs and parameters that can be provided for the Axios library.

There are a few different methods/libraries we could use to accomplish the
same goal — for example, the humps package from
https://www.npmjs.com/package/humps is another library we could use to
expose similar functionality, but what we are using works well for our use
case.

Summary

This chapter introduced Tailwind CSS and discussed its utility-first
approach. We’ve previously seen samples of it in Chapter 4, Serving and
Embedding HTML Content, where we were provided with the HTML/CSS,
but this is our first look at using it and how we can rapidly create
components outside of heavier frameworks, as well as how we can rapidly
integrate it with our frontend Vue application with configuration and how
we can test its successful installation.

In this chapter, we created a full-stack application, bringing our expertise
together thus far. We’ve successfully built a frontend application in Vue that
communicates with our backend in Golang; as part of this, we also looked
at how to configure and use Axios and how to mitigate common CORS
issues, before concluding with a brief look at using middleware in our Vue

app to allow us to communicate across different JSON schemas in the
backend.

In the next chapter, we’ll look into securing our sessions, using JWTs for
sessions, middleware, and creating and using navigation guards in Vue.

https://axios-http.com/docs/req_config
https://www.npmjs.com/package/humps

Session Management

In Chapter 9, Tailwind, Middleware, and CORS, we created a full-stack app
with an independent frontend and backend talking to each other via an API.

In this chapter, we’ll bring all of our existing knowledge together, introduce
how to create and validate JSON Web Tokens (JWTs) for session
management and middleware, set up the basic tenets of using Vue Router
with navigation guards, and learn about errors and “catch-all” navigation
guards.

We’ll cover the following topics in this chapter:

Session management and JWTs
(Re)introducing Vue Router
Navigation guards

Defaults and error pages

By the end of this chapter, we’ll have an understanding of how to complete
and secure a project ready for our waiting users.

Technical requirements

All the source code explained in this chapter can be checked out at
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-
Go/tree/main/chapter10.

Session management and JW'Ts

We looked at session management using cookies previously in Chapter 6,
Moving to API-First, using the Gorilla Mux middleware. In our app, we

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/chapter10

created an in-memory cookie store via the functionality provided by Gorilla
sessions: https://github.com/gorilla/sessions.

We previously implemented our middleware to validate that our user was
approved by encoding two values — a user ID we looked up from the
database and a userAuthenticated Boolean value. This worked well for
our use case, but our implementation meant that every call to our API
backend required a round trip to the database to check that the user ID was
still present, before letting the call continue.

Login
Find UserID by
Username + Username +
Password > (}@ Of.) Password Hash \
4
? <
Set Secure
Session Token
(with UserlD API Server
Save Workout
Find UserlD from
Session Token
+ Workout Data % e) Session Token
? ©G>© >
Z
N\
Saved OK Save Workout

(API Server)
<

Figure 10.1: An illustration of login and save API workflows using a
session cookie

This approach is fine and the Gorilla sessions library provides a number of
alternative backends to speed things up, such as using Redis and SQLite,

https://github.com/gorilla/sessions

but we’re going to look at an alternative approach using JWTs.

What’s a JWT?

JWT stands for JSON Web Token. A JWT is a standard for creating data
with optional signatures (public or public/private) and/or encryption, with a
payload consisting of JSON that asserts a number of what the JWT
specification calls claims. You can generate and examine JWTs on the web
at jwt.io, and these are broken down into three parts, consisting of the
header, the payload (with the claims), and the signature. These are then
base64-encoded and concatenated together using a . separator, which you
can see here.

Header - algorithm used
eyJhbGei0iJIUzIINiTsInR5cCI6TIkpXVCID ey and the token type
JZAWTi0iTxMiMBNTY30DkwIiwidGlabGUi0iJGd
WxsIFNOYWNrIEdvIiwiaWFOIjoxNTE2MjM5MDIy Payload - The data and
£Q. B : claims

Signature - Used to

Figure 10.2: Color-coded illustration showing the parts of a JWT

The part that is of interest to us is the payload and the claims. A number of
reserved claims exist that we should respect as part of the specification,
which are as follows:

iss (issuer): The issuer of the JWT.

sub (subject): The subject of the JWT (the user).

aud (audience): The recipient for which the JWT is intended.
exp (expiration time): The time after which the JWT expires.

nbf (not before time): The time before which the JWT must not be
accepted for processing.

iat (issued at time): The time at which the JWT was issued. This can
be used to determine the age of the JWT.

jti (JWT ID): A unique identifier. This can be used to prevent the
JWT from being replayed (allows a token to be used only once).

In the library, we’re going to use go-jwt, available at

Go struct, as shown here:

// Structured version of Claims Section, as referenced at
// https://tools.ietf.org/html/rfc7519#section-4.1
type StandardClaims struct {

Audience string "json:"aud,omitempty"’

ExpiresAt int64 ~json:'"exp,omitempty"’

Id string “json:"jti,omitempty""
IssuedAt 1int64 “json:"iat,omitempty""
Issuer string "json:"iss,omitempty""

NotBefore int64 ~json:'"nbf,omitempty""
Subject string “json:"sub,omitempty""

We can add to these claims to provide our own additional claims, and in
typical Go style, we do so by embedding StandardClaims into our own
struct, which I’ve called MyCustomClaims, as shown here:

mySigningKey := []byte("PacktPub")
// Your claims above and beyond the default
type MyCustomClaims struct {
Foo string " json:"foo""
jwt.StandardClaims

¥
// Create the Claims
claims := MyCustomClaims{
llbaru’
// Note we embed the standard claims here
jwt.StandardClaims{
ExpiresAt: time.Now().Add(time.Minute *
1).Unix(),
Issuer: "FullStackGo",
I
¥

// Encode to token

https://github.com/golang-jwt/jwt

token := jwt.NewwWithClaims(jwt.SigningMethodHS256,
claims)

tokenString, err := token.SignedString(mySigningKey)

fmt.Printf("Your JWT as a string is %v\n'", tokenString)

If you execute this code, you will get the following output:

$ go run chapter10/jwt-example.go

Your JWT as a string is

eyJhbGci0i1iJIUzZIINiISINR5cCIBIKkpXVCJI9. ey
Jmb28i101JiYXIiLCJ1eHAIOJE2NTY3MzY2NDIsImlzcyI6IkZ1bGXxTdGFjaod
v In0.04YUzywlBUukYg5H6CP_nz9gAmI2Ay1vNXGOYC50EQOM

When you run the sample code or write your own, it will look slightly
different because of the relative expiration in StandardClaims, and if you
tried decoding the preceding string, chances are that it will show as expired
by quite a few seconds!

You may be asking why you should care about JWTs when you've already
seen your database-based middleware working. The reason is that we can
save a round trip to our database, saving us time and bandwidth.

Because JWTs are signed, we can confidently assume that the provided
claims can be asserted to be true so long as the JWT is decoded as we
expect. With our JWT-based model, we can instead encode the user details
and permissions into the claims on the JWT itself.

Login

Find UseriD by
Usernamse + Username +
Password GI 1';_’ Password Hash
% O@@ %
2
Y
Set JWT
containing
V. an |d‘tﬂun‘ AP Server
A
Save Workout
JWT + Warkout JWT is validated

without » database

_)Dm Gg @a call

Save Workout

mm%

Saved OK

P

T

Figure 10.3: An illustration of login and save API workflows using a JWT
secured session

This all seems great, but there are a number of “gotchas” when working
with JWTs, and it’s worth covering them before we start using them in
every situation.

The “none algorithm” gotcha

An unsecured JWT can be created where the “alg” header parameter value
is set to “none” with an empty string for its signature value.

Given that our JWTs are simply base64-encoded payloads, a malicious
hacker could decode our JWT, strip off the signature, change the alg
parameter to “none” and try to present it back to our API as a valid JWT.

$ Pipe our encoded JWT through the base64 command to decode
it

$ echo eyJhbGciO1iJIUzIAINiISINR5cCI6IkpXVCJI9 | base64 -D
{llalgll : "H8256", lltypll : IIJWTII}

$ echo '{"alg":"none","typ":"JWT"}' | base64
eyJhbGci0iJub251TiwidHIwIjoiS1dUINOK

It’s important that the library you’re using verifies that you’re receiving
your JWTs back with the same alg you provided, and you should verify this
yourself before using it.

The “logout” gotcha

When you click to log out of your web app, the common thing to do is to
set the cookie expiration to a date in the past, and then the browser will
delete the cookie. You should also remove any active session information
from your database and/or app. The issue is that with JWTs, it may not
work how you expect it to. Because a JWT is self-contained, it will
continue to work and be considered valid until it expires — the JWT
expiration, not that of the cookie — so if someone were to intercept your
JWT, they could continue to access the platform until the JWT expired.

The “banlist” or “stale data” gotcha

Similar to the logout gotcha, because our JWTs are self-contained, the data
stored in them can be stale until refreshed. This can manifest as access
rights/permissions becoming out of sync or, worse still, someone being able
to continue to log in to your application after you’ve banned them. This is
worse in scenarios where you need to be able to block a user in real time —
for example, in situations of abuse or poor behavior. Instead, with the JWT
model, the user will continue to have access until the token expires.

Using JW'Ts with cookies and our
middleware

With all of our previous gotchas understood, we’re going to write some
simple middleware and cookie handling to build on our simple API service
from Chapter 9, Tailwind, Middleware, and CORS, combining it with our
knowledge from Chapter 5, Securing the Backend and Middleware.

This code is all provided on GitHub under chapter10/simple-backend.
Setting cookies and validation middleware

In order to start using our new JWTs, we’re going to write some
middleware for the mux to consume that we will inject into all our protected
routes. As before, we’re using a signature that the default library uses,
where we take in http.Handler and return handlerFunc. When successful,
we call next.ServerHTTP(http.ResponseWriter, *http.Request)to
continue and indicate the successful handling of a request:

// IWTProtectedMiddleware verifies a valid JWT exists in
// our cookie and if not, encourages the consumer to login
// again.
func JWTProtectedMiddleware(next http.Handler) http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter,
r *http.Request) {
// Grab jwt-token cookie
jwtCookie, err := r.Cookie("jwt-token")
if err != nil {
log.Println("Error occurred reading cookie", err)
w.WriteHeader (http.StatusUnauthorized)
json.NewEncoder (w).Encode(struct {
Message string " json:'"message,omitempty"”

H
Message: "Your session is not valid -
please login",

1)

return
} | | |
// Decode and validate JWT if there is one
userEmail, err := decodeJWTToUser (jwtCookie.Value)
if userEmail == "" || err != nil {

log.Println("Error decoding token", err)
w.WriteHeader (http.StatusUnauthorized)
json.NewEncoder (w).Encode(struct {

Message string "~ json:'"message,omitempty"’

H

Message: "Your session is not valid -
please login",

1)

return
L o
// If it's good, update the expiry time
freshToken := createJWTTokenForUser(userEmail)

// Set the new cookie and continue into the handler
w.Header () .Add("Content-Type", "application/json")
http.SetCookie(w, authCookie(freshToken))
next.ServeHTTP(w, r)

1)

This code is checking for our cookie, named jwt - token, and decodes it
with our new decodeJwTToUser, checking the value for a valid entry. In our
case, we expect userEmail, and if it is not present, we simply return an
invalid session message. In this example, we then update the expiry time for
the JWT and exit the function after setting the latest cookie.

In practice, we would check more strictly to ensure that a small window is
kept for valid claims, and we’d then go back to the database to check
whether the user still had permission to access our platform.

The functionality we use for setup and manipulation of our cookies is very
similar to our previous work in Chapter 5, Securing the Backend and
Middleware including with the domain, same-site mode, and, most
importantly, HttpOnly and Secure.

We use Secure as good practice to ensure that it’s only ever sent via secure
HTTPS (except on localhost for development) as, although we can be
confident our JWT is secure, it can still be decoded with tools such as
jwt.io:

var jwtSigningKey []byte
var defaultCookie http.Cookie
var jwtSessionLength time.Duration
var jwtSigningMethod = jwt.SigningMethodHS256
func init() {
jwtSigningKey = []byte(env.GetAsString(
"JWT_SIGNING_KEY", "PacktPub"))

defaultSecureCookie = http.Cookie{

HttpOnly: true,

SameSite: http.SameSitelLaxMode,

Domain: env.GetAsString("COOKIE_DOMAIN",

"localhost"),

Secure: env.GetAsBool("COOKIE_SECURE", true),
}
jwtSessionLength = time.Duration(env.GetAsInt(

"JWT_SESSION_LENGTH", 5))

b
func authCookie(token string) *http.Cookie {
d := defaultSecureCookie
d.Name = "jwt-token"
d.value = token
d.Path = "/"
return &d
}

func expiredAuthCookie() *http.Cookie {

d := defaultSecureCookie
d.Name = "jwt-token"
d.value = ""

d.path = "/"

d

.MaxAge = -1

// set our expiration to some date in the distant

// past

d.Expires = time.Date(1983, 7, 26, 20, 34, 58,
651387237, time.UTC)

return &d

The Httponly flag is used for us in our cookie package and hasn’t been
mentioned before — so, what is it?

Well, by default, when we don’t use HttpOnly, our frontend Javascript can
read and inspect cookie values. This is useful for setting a temporary state
via the frontend and for storing a state that the frontend needs to
manipulate. This is fine for a number of scenarios, and your application
may have a combination of cookie-handling techniques.

When you use HttpOnly, the browser prevents access to the cookie,
typically returning an empty string as the result of any values read. This is
useful for preventing Cross-Site Scripting (XSS), where malicious sites try

to access your values, and prevents you from sending data to a third-
party/attacker’s website.

This doesn’t prevent us from logging in (which wouldn’t be very helpful!).
All our API/backend requests can still be performed with all cookies, but
we do need to tell our frontend application to do so.

After providing the ability to log in with these additions to our backend,
we’re now going to revisit routing so that we can move around within our

app.

(Re)introducing Vue Router

Before we dive in, we need to quickly refresh our understanding of how our
frontend and backend communicate and ensure that we know how things
work.

You may recall from Chapter 9, Tailwind, Middleware, and CORS that we
set up our axios instance (under src/lib/api.js). With a few defaults,
this is where the withCredentials value comes into play:

export default axios.create({
baseURL: import.meta.env.VITE_BASE_API_URL,
withCredentials: true,
transformRequest: [...axios.defaults.transformRequest,
transformSnakeCase],
transformResponse: [...axios.defaults.transformResponse,
transformCamelCase],
1);

We want to ensure that all our hard work with the Secure and Httponly
cookies is preserved when the frontend and backend communicate, and
withCredentials ensures that all requests to the backend should be made,
complete with cookies, auth headers, and so on.

We’re going to be building on this axios instance as we introduce the
concept of navigation guards. What we’re going to do before we navigate
around our application is fetch/refresh our data from the backend before

rendering. This gives us the ability to check whether users should be
looking at certain pages, whether they need to be logged in, or whether they
shouldn’t be snooping!

With our app now passing our cookies into every request, we can now move
into utilizing permissions as we navigate our app using navigation guards.

Navigation guards

Navigation guards in Vue are fundamental for logged-in users. As with any
core functionality of Vue, it’s worth diving into the amazing documentation
provided by the Vue team here:
https://router.vuejs.org/guide/advanced/navigation-guards.html.

A navigation guard is, as the name suggests, a way to cancel or reroute
users depending on the results of certain guard rails checks. They can be
installed globally — for example, everything is behind a login/paywall — or
they can be placed on individual routes.

They are called on a navigation request, in order, and before a component is
loaded. They can also be used to retrieve props to be provided to the next
pages components and use the syntax of router.beforeEach (to, from).

Previous versions also provided a next parameter, but this has been
deprecated and shouldn’t be used in modern code.

The functionality of a navigation guard is as follows:
to: Provides the target location, where the user is trying to navigate to
from: The current location where the user is coming from

The job of the guard handler is to assess whether to allow navigation or not.

The handler can do this by returning false, a new route location, which is
used to manipulate the browser history via a router.push() to allow
additional props, or simply true to indicate the navigation is allowed.

https://router.vuejs.org/guide/advanced/navigation-guards.html

Using a simple example from the docs, we can install a global navigation
guard on our routes to check the value of the isAuthenticated variable
before navigating:

router.beforekach(async (to, from) => {
if (
// make sure the user is authenticated
lisAuthenticated &&
// Avoid an infinite redirect
to.name !== 'Login'

) o

// redirect the user to the login page
return { name: 'Login' }

}

// Otherwise navigation succeeds to 'from'

1)

Putting the logic into each route can be a bit ugly. What we will do is
expose an endpoint in the backend that returns either a value or even just a
20x HTTP successful response, check for this in our middleware, and if that
works, we will allow navigation.

In the following code, we’ve got an endpoint, /profile, exposed on our
backend. This can return data or, in this simple case, just a 200/OK
response, and we can check that with our getCheckLogin() function.

Our checkAuth() function now checks a meta value for an optional Boolean
value called requiresAuth. If there’s no authorization required, we
navigate successfully; otherwise, we try to access our endpoint. If there’s an
error (non-successful) request, we redirect to our login page; otherwise, we
allow the navigation to continue:

export function getCheckLogin() {
return api.get('/profile');
b

export default function checkAuth() {
return async function checkAuthOrRedirect(to, from) {
if (!'to?.meta?.requiresAuth) {
// non protected route, allow it
return;

}

try {
const { data } = await getCheckLogin();

return;
} catch (error) {
return { name: 'Login'};

}
1
}

These checks can be as complicated as we want in our navigation guards,
but remember that you’re calling these on every navigation. You might
want to look at state management if you find yourself doing this a lot, such
as Pinia (Vue 3) or Vuex (if you’re using Vue 2).

To install these checks and values, we simply install the global handler, and
for protected routes, we provide the meta Boolean. This is shown in the
following code snippet:

const router = createRouter({
history: createWebHistory(import.meta.env.BASE_URL),

routes: [
{
path: '/login',
Name: 'Login',
meta: {
requiresAuth: false,
+
props: true,
component: () => import('@/views/login.vue'),
i {
path: '/dashboard,
Name: 'Dashboard',
meta: {
requiresAuth: true,
+
props: true,
component: () => import('@/views/dashboard.vue'),
1]
1)

router.beforekEach(checkAuth());

Meta fields are a useful feature. They allow us to attach arbitrary
information to our routes, in our situation we’re using the meta information
as an indicator to check the authorization. You can find out more about
meta here: https://v3.router.vuejs.org/guide/advanced/meta.html.

With the ability to provide for logged-in and logged-out statuses, we now
have a functioning app. One final thing to really polish our app is to provide
default and error pages for our users if our app goes wrong or if they land
on the wrong page in it.

Defaults and error pages

With our application now securely communicating to the backend and
routing correctly based on authorization, we are almost finished with our
core functional requirements.

There’s one final scenario that may arise for our users — the dreaded 404 —
the page not found error! Thankfully, Vue Router makes it easy to create a
wildcarded “catch-all” route that will be set to redirect users to a specific
page if they navigate to somewhere that doesn’t exist.

As you know, in Vue, all routes are defined by creating rules on the specific
URL path. So, for example, creating a route for a path of /user would be
caught if the user entered packt.com/user, but it wouldn’t if the user entered
packt.com/my-user or any other word that is not precisely the one set in
the path rule.

To define our catch-all rule in version 4 of the Vue routervue-router 4, we
will use the following route entry:

{ path: '/:pathMatch(.*)*', name: 'not-found', component:
NotFound }

We will inject this as the final route in our router.routes. The wildcard at
the end of the path match means we can navigate to this page and catch the
expected route. Alternatively, if that’s too much magic, you can use path:
‘/*'" and don’t need to worry about catching the intended route.

https://v3.router.vuejs.org/guide/advanced/meta.html

The best practice for a 404 page not found error would be to provide hints
of what went wrong and give the user a way to get home or navigate to a
similar page, but that’s a choice you can make for your NotFound
component.

Summary

Excitedly, we’ve now got enough knowledge to complete the development
of our full-stack app. In this chapter, we introduced JWT-based tokens,
talked about when and why to use them, and covered a few “gotchas.” We
then revisited cookie handling between our front and backend parts before,
finally, moving on to Vue Router.

Closing off the chapter with Vue Router, we looked at adding navigation
guards, looked at how we can use meta values to enhance our development
experience and mark pages for authorization, before finishing off by setting
up our catch-all error-handling route so that our users have a great
experience.

In the next chapters, we’ll look at getting our app into production and
getting ready for our first users.

Part 4:Release and Deployment

The objective of this part of the book is to learn about the application
release process and cloud deployments as part of the development process.

This part includes the following chapters:

Chapter 11, Feature Flags

Chapter 12, Building Continuous Integration
Chapter 13, Dockerizing an Application
Chapter 14, Cloud Deployment

Feature Flags

In this chapter, we will learn about feature flags, what they are, how to use
them, and the benefits of using them. Using feature flags is not mandatory
for applications. However, as application complexity increases, the need for
feature flags will arise.

There are many different features provided by feature flags, but in this
chapter, we will focus on how to use feature flags to enable/disable certain
features in an application. We will be using an open source, simple version
of the feature flag server to demonstrate the integration for both frontend
and backend services.

In this chapter, we’ll cover the following topics:

Understanding what feature flags are all about
Installing an open source feature flag server
Enabling/disabling features using feature flags

Integrating feature flags for frontend and backend services

Technical requirements

All the source code explained in this chapter can be found at
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-
Go/tree/main/chapter11.

This chapter uses the cURL tool to perform HTTP operations. The tool is
available for different operating systems and can be downloaded from
https://curl.se/download.html.

An introduction to feature flags

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/chapter11
https://curl.se/download.html

In the current rapidly changing world, developers need to make changes
and roll out new features almost every single day, if not quicker.
Sometimes, this requires features to be built even before there are any user
needs. Having the ability to deploy features into production without
disruption is the holy grail of software development.

Features that are deployed to production may or may not be made available
to users; this all depends on tactical decisions on the business side.
Developers will keep on releasing features to production and, when the time
is right, the feature will be made available with a click of a button from the
business side. This kind of facility is provided by the feature flag.

In simple terms, feature flags are like on/off switches that we can use to
enable/disable features in our applications without creating disruption.
Enabling features will also allow companies to strategically enable or
disable features depending on the market and users’ needs, which can
impact the bottom line of a company.

As a tool, feature flags not only provide the ability to run on/off features but
there are also many other benefits you can also get out of it:

Testing features for certain demographics based on certain conditions
such as geographical location, user’s age, and so on

Splitting of the traffic request based on network condition

Conducting UX experiments to understand which design works well

In this chapter, we will look at an open source project feature flag tool to
demonstrate how to use and integrate it.

Feature flag configuration

You can use feature flags by deploying them in your infrastructure or by
using software-as-a-service solutions such as LaunchDarkly, Flagsmith, and
many other available solutions. Each of the solutions provides its own API,
which needs to be integrated into your application. This means that your

application is tied to the solution that you choose. There is no one-size-fits-
all solution; it all depends on what kind of features you need for your
application.

Let’s take a look at different kinds of configuration for using feature flags.
Figure 11.1 shows the simplest way to use feature flags.

A

Web Client Feature Flag
Application Server

Figure 11.1: A web client using feature flags

The web client will enable or disable the user interface depending on the
feature flag. For example, in an application, a particular menu selection can
be enabled when the feature flag related to the menu is turned on.

Figure 11.2 shows a different configuration where the web client will call
different microservices, depending on which feature flag is turned on/off:

B
Feature Flag
> Server
Web Client - MicroService A
Application (Flag A)
> MicroService A
(Flag B)

Figure 11.2: Feature flag microservices

In the preceding example, the web client calls microservice A when feature
flag A is turned on.

Another interesting configuration is shown in Figure 11.3, where the main
microservice will determine which user interface will be returned back to
the web client, depending on which feature flag has been configured:

C o | MicroService A
. (Flag A}
TS TR M f
Web Client o Main > lcﬁ-‘li:;.; -.rﬁuic B
Application Tl Micreservice L = - 3
o | MicreService C
v (Flag C}

Feature Flag
Server
Figure 11.3: The feature flags for microservices

In the above example, the web client will get a different response to render
if the main microservice detects that feature flag C has been enabled, which
will get the response from MicroService C.

So, as we can see, there are different ways to use feature flags and different
places to use them. It all comes down to what will be needed for your
application.

In the next section, we will look at using an open source feature flag server
to enable/disable buttons in a sample web app.

Use cases for using feature flags

Feature flags are not limited to flags that can be configured to turn on/off
features inside applications; there are many more features and capabilities.
In this section, we will look at the features provided in a full-blown feature
flag server:

Segment targeting — Imagine you are building a feature that you want
to test on a group of users in your application. For example, you may
want a certain group of users that are based in the USA to use the
checkout feature based on PayPal.

Risk mitigation — Building product features does not guarantee that a
feature will bring in more users. New features can be released and, with
time and more analysis, if it is found that the feature is providing a bad
user experience, it will be turned off as part of the risk mitigation
process.

Gathering feedback before launch — Using a targeted rollout for a
certain group of users, it is possible to get feedback as early as possible
from the user. The feedback will provide insight for the team to decide
whether the feature indeed provides any additional benefit to the user or
not.

Now we have a good understanding of the use cases for feature flag, we
will look at installing the feature flag server in the next section.

Installing the feature flag server

We are going to use an open source feature flag server. Clone the project
from the github.com/nanikjava/feature-flags repository as follows:

git clone https://github.com/nanikjava/feature-flags

From your terminal, change the directory into the project directory and
build the server using the following command:

go build -o fflag .

We are using the -o flag to compile the application and output it to a
filename called fflag. Now that the server has been compiled and is ready
to use, open a separate terminal window and run the server as follows:

./fflag

You will see the following output:

2022/07/30 15:10:38 Feature flag is up listening on :8080

http://github.com/nanikjava/feature-flags

The server is now listening on port 8080. Now, we need to add a new
feature flag for our web app, and the key is called disable_get. The way to
do this is to use the curl command line to send data using POST as follows:

curl -v -X POST http://localhost:8080/features -H "Content-
Type:application/json" -d

"{"key":"disable_get", "enabled":false, "users":[], "groups":
["dev", "admin"], "percentage":0}'

The curl command is calling the /features endpoint and passing the
JSON data. Once this has completed successfully, you will see the
following output:

{
"key": "disable_get",
"enabled": false,
"users": [],
"groups": [
"deV",
"admin"
1
"percentage": 0
}

The JSON output shows that the feature flag server now has a new key
called disable_get, and it is disabled, as indicated by the flag enabled:
false. The output should look as follows, showing that the data has been
successfully added:

Trying 127.0.0.1:8080...
Connected to localhost (127.0.0.1) port 8080 (#0)

* %

* :

Mark bundle as not supporting multiuse
HTTP/1.1 201 Created

N

Content-Length: 89

<
<
{"key":"disable_get", "enabled":false, "users":[], "groups":
["dev", "admin"], "percentage":0}

* Connection #0 to host localhost left intact

The feature flag server is ready with the data we need. In the next section,
we will look at using the flag inside our web app.

The high-level architecture of
feature flags

Figure 11.4 shows the architecture of the open source feature flag server at
a high level.

Feature Flag Server

GET Handler

WebClient

POST Handler s

DELETE Handler

Microservice

PATCH Handler

Figure 11.4: The high-level architecture

Looking at the diagram, the server uses mux.Router to route for different
HTTP requests such as GET, POST, DELETE, and PATCH. The server uses an
internal database as persistent storage for the feature flags that the
application requires.

The server is accessible via HTTP request calls that can be made from both
web clients and microservices using the normal HTTP protocol.

Integration of the feature flag

After we have installed the feature flag server, we want to start using it in
our application. In this section, we will look at integrating the feature flag to
enable/disable certain user interface elements in the frontend and to call
only the backend services from our server that are enabled.

Web application

The sample app we are going to use can be found inside the
chapteri1i/frontend-enable-disable folder; the sample app demonstrates
how to use the feature flag to enable/disable the user interface button. Open
the terminal and change into the chapterii/frontend-enable-disable
directory to run the web app as follows:

npm install
npm run dev

The commands will install all the necessary packages and then run the web
app. Once the command completes, open your browser and type
http://localhost:3000 in the address bar. You will see the web app
shown in Figure 11.5.

- O localkost

|]

Wil fired in cine (:FII'II'I":l O

Your AP is at hitp0.0,0.0:8080

Figure 11.5: The initial view of the web app using the feature flag

What you are seeing in Figure 11.5 is that one of the buttons has been
disabled. This is based on the flag value that we set in the previous section.
The flag data looks as follows:

{
"key": "disable_get",

"enabled": false,
"users": [],
"groups": [

lldevll
/4
"admin"

1,

"percentage": 0

}

The disable_get key is the flag key we added to the server and the
enabled field is set to false, which means that the button is disabled. Let’s
change the enabled field to true and let’s see how the web page changes.

Use the following command in a terminal to update the data:

curl -v -X PATCH http://localhost:8080/features/disable_get -
H "Content-Type: application/json" -d
"{"key":"disable_get", "enabled":true}'

The curl command updates the enabled field to true. Refresh the browser
page and you will see the button is enabled, as shown in Figure 11.6.

Q M localhost

Click to Get

Click to Post

Figure 11.6: The Click to Get button is enabled

The following code snippet from the Helloworld.vue file takes care of
reading the key from the server, using it to enable/disable the button:

<script>
import axios from 'axios';
export default {
data() {
return {
enabled: true

}

I
mounted() {

axios({method: "GET", "url":
"http://localhost:8080/features/disable_get"}).then(resu
1t => {
this.enabled = result.data.enabled
console.log(result);
}, error => {
console.error(error);

1)
}
b
</script>
<template>
<div v-if="enabled" class="flex space-2 justify-center'">

é)ﬁutton>
</div>

In the next section, we will look at using the feature flag to enable/disable
certain features on the backend service.

Microservice integration

In this section, we will use the feature flag to enable/disable certain
services. This will give the application the flexibility to access only the
services that are currently enabled. Figure 11.7 shows how the microservice
will be structured. The application is inside the chapterii/multiple-
service folder.

Feature Flag

Server
:8081
I ServiceA
(Flag servicea)
:8000
Web Client I Main Server
Application
18082
I ServiceB
(Flag serviceb)

Figure 11.7: The microservice structure for the feature flag

Following the steps from the previous section to run the feature flag server,
use the following command to create the flags:

curl -v -X POST http://localhost:8080/features -H "Content-
Type: application/json" -d '{"key":"serviceb",
"enabled":true, "users":[], "groups":

["dev", "admin"], "percentage":0}'

curl -v -X POST http://localhost:8080/features -H "Content-
Type: application/json" -d '{"key":"servicea",
"enabled":false, "users":[], "groups":

["dev", "admin"], "percentage":0}'

The command creates two keys: servicea and serviceb. For now,
servicea is disabled, while serviceb is enabled. Once the feature flags
have been set up, we are going to run different services:

Main server — open the terminal and make sure you are inside the

chapterii/multiple-service/mainserver directory. Run the main
server with the following command:

go run main.go

The main server will run on port 8080.

servicea — open the terminal and change the directory to
chapterill/multiple-service/servicea. Run the service with the
following command:

go run main.go

servicea will run on port 8081.

serviceb — open the terminal and change the directory to
chapteriil/multiple-service/serviceb. Run the service with the
following command:

go run main.go

serviceb will run on port 8082.

We now have three different services running on ports 8080, 8081, and
8082. Open your browser and access the service using
http://localhost:8000. You will get a response like the following:

{"Message'":"-ServiceB active"}

The response sent back came from serviceb as servicea is disabled, as per
the configuration from the feature flag server. Now, let’s turn on the flag for
servicea using the following command:

curl -v -X PATCH http://localhost:8080/features/servicea -H
"Content-Type: application/json" -d '{"enabled":true}'

Restart the main server by force-stopping it using Ctrl + C. Re-run it using
the same command discussed previously. Open your browser and access the
service using http://localhost:8000. You should get a result like the
following:

{"Message'":"ServiceA active-ServiceB active"}

We get responses from both services now that both have been enabled.

Let’s take a look at the code to understand how the feature flag is used. The
following snippet shows part of the code to start the server:

func main() {
port := ":8000"

wg := &sync.WaitGroup{}
wg.Add (1)
go func(w *sync.WaitGroup) {
defer w.Done()
serviceA = checkFlags('"servicea")

serviceB checkFlags('"serviceb")
}(wg)
wg.Wait()
http.ListenAndServe(port, rtr)

The code calls the feature flag server to get flag information for servicea
and serviceb in a goroutine. Once completed, it starts the server to listen
on port 8000. The state of the services is stored inside the servicea and
serviceb variables, which will be used in other parts of the code, as shown
in the following code snippet:

func handler() http.HandlerFunc {
type ResponseBody struct {
Message string
}

return func(rw http.ResponseWriter, req *http.Request) {
var a, b string
if serviceA {
a = callService("8081")
b

if serviceB {
b = callService("8082")

}

json.NewEncoder (rw).Encode(ResponseBody{
Message: a + "-" + b,

1)

The handler () method is called when you access the server on port 8000.
Inside the code, as can be seen, it calls the service only when it is enabled.
Once the service is called, the results from the service are combined and
sent back to the client as a single JSON response.

The following code snippet shows how to access the feature flag server to
extract the different flags. It uses a normal HTTP GET call:

func checkFlags(key string) bool {

requestURL :=
fmt.Sprintf("http://localhost:%d/features/%s", 8080, key)
res, err := http.Get(requestURL)

resBody, err := ioutil.ReadAll(res.Body)
if err != nil {
log.Printf("client: could not read response body:
%s\n", err)
0S.Exit(1)
}

}ééurn f.Enabled

}

The code is calling the feature flag server by getting each key that we are
interested in. So, in the case of the sample, we are calling using the
following URLs:

http://localhost:8080/features/servicea
http://localhost:8080/features/serviceb

For example, when calling http://localhost:8080/features/servicea,
the code will get the following JSON response from the feature flag server:

{
"key": "servicea",
"enabled": true,
"users": [],
"groups": [
"deV",
"admin"
1,
"percentage": 0
3

The checkFlags() function is interested only in the enabled field, which
will be unmarshalled into the FeatureFlagServerResponse struct as shown
below:

func checkFlags(key string) bool {
type FeatureFlagServerResponse struct {
Enabled bool "json:"enabled""
¥

var f FeatureFlagServerResponse
err = json.Unmarshal(resBody, &f)

After successfully converting the JSON to a struct, it will return the
Enabled value as shown here:

func checkFlags(key string) bool {

Fééurn f.Enabled

}

We have come to the end of the chapter. In this section, we looked at
integrating the feature flag in different scenarios such as inside web
applications as well as using it as a feature toggle for accessing different
microservices. There are other use cases where feature flags can be used,
such as enabling/disabling performance metrics in production and enabling
tracing in production for troubleshooting bugs.

Summary

In this chapter, we learned about feature flags, including what they are used
for and how to use them. We learned how to install a simple feature flag
server and saw how to integrate it with our sample application.

We went through the steps of using feature flags in two different use cases —
integrating it by checking on the flag to enable/disable a button in our
frontend and in the backend to call different microservices. Using feature
flags to enable or disable certain services gives the application flexibility on
what response will be sent back to the frontend, which gives developers the
ability to allow access to certain services as and when needed.

In the next chapter, we will look at building continuous integration by
exploring the different features provided by GitHub.

Building Continuous Integration

Building web applications to solve a problem is great, but we also need to
make the applications available to users so they can start using them. As
developers, we write code. But, at the same time, this code will need to be
built or compiled so that it can be deployed, allowing users to use it. We
need to understand how we can build our web application automatically,
without requiring any manual process to work through. This is what we are
going to talk about in this chapter. We will look at what is known as
continuous integration (CI).

Cl is a practice or process for automating the integration of code from
different contributors into a project. CI allows developers to frequently
merge code into a code repository where it will be tested and built
automatically.

In this chapter, we will learn about the following for CI:

GitHub workflows
Using GitHub Actions
Publishing to GitHub Packages

Technical requirements

The source code for this chapter can be found at
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-
Go/tree/main/chapter12. In this chapter, we will also be using another
repository when setting up CI for explanatory purposes. The repository is
https://GitHub.com/nanikjava/golangci.

Importance of CI

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/chapter12
https://github.com/nanikjava/golangci

You can think of CI as one aspect of your development process. The main
reason why this is important is to allow you, as developers, to ensure that
all code that is committed into a central code repository is tested and
validated.

This becomes crucial when you are working in a team environment where
multiple developers are working on the same project. Having proper CI will
give developers peace of mind and assurance that all code they are using
can be compiled properly and that automated test cases have been run
successfully. Imagine that you have to check out some projects from
GitHub, but when you try to compile and run some test cases, it fails; it
would be a disaster as you would have to spend time fixing things, but if the
project had a proper CI process set up, it would ensure all the committed
code would compile correctly and test cases would pass.

Even when working as a solo developer on a project, it is highly
recommended to have CI in place. The minimum benefit you will get from
this is the assurance that your code can be built correctly. This also makes
sure that any local dependencies related to your local machine that have
been accidentally added to the code are detected when a build failure
occurs.

In the next section, we will look at building our CI using GitHub by going
through the different steps required to have CI for our web application.

Setting up GitHub

In this section, we will explain the different things that need to be prepared
to get automated CI in GitHub. To gain a better understanding of the CI
process, it is recommended that you create your own separate GitHub
repository and copy everything inside the chapteri2 directory to the new
repository. Initially, when the nanikjava/golangci repository is created, it
will look similar to Figure 12.1.

Code

Quiick setup — if you've done this kind of thing before

o sfrtend by i L W ez Tyt T

.0F cheale & new repositony on the command lne

..OF piush &n existing repository from the commanid line

Figure 12.1: A fresh GitHub repo

For this chapter, we have set up a separate repository
(https://GitHub.com/nanikjava/golangci) that we will use as a reference
guide for the discussions in this chapter. We will go through the steps of
creating a simple GitHub workflow in the repository. A GitHub workflow is
a set of instructions that run one or more jobs. The instructions are defined
in a YAML file with the extension of .yaml in the .GitHub/workflows
directory of the repository.

You can define multiple workflows for your repository that perform
different automated processes. For example, you can have one workflow
file to build and test your application and another for deploying the
application to a central location.

Let’s create a simple workflow file inside the new repository by following
the steps below:

1. From your repository, click on the Actions menu. This will bring you
to the Get Started with GitHub Actions page, as shown in Figure
12.2.

https://github.com/nanikjava/golangci

Get started with GitHub Actions

Figure 12.2: The Get started with GitHub Actions page

2. Click on the set up a workflow yourself link. This will take to you a
new page where you can start writing your workflow, as shown in

Figure 12.3.

m iy Y Py

Figure 12.3: The create a new workflow screen

For now, we are going to create a simple workflow that we can use from
GitHub. The workflow can be found at
https://docs.GitHub.com/en/actions/quickstart. Copy and paste the
workflow, as shown in Figure 12.4.

https://docs.github.com/en/actions/quickstart

<» Code () issmes I Pullrequesis (B) Actions [Proects [0 wikd (B Secwity l= insights B Semings
golangci | github / workdfiows | main yml
€ Edit new Blg & Preven Spaces =
nand; GLEMUD ASt1oni Demo
o) [pesh]
{abs
Explere-GitHeb-Ackions:
russ-on; ubuntu- latest
steps
run: echo =k The job was aufesatically triggered by a S{[gltsub.event_nase }] event.®
tho A This joi is row running on a 3{{ renner.os }} server mosted by GitHeb!®
Trs mase of your branch is 3{{ giteub.reT)} and your reposivery is 3{{ github_repasitery }}.=
t

Figure 12.4: A sample GitHub workflow .yaml file

Mo wiap

3. Commit the file by clicking on the Start commit button, as shown in
Figure 12.5. After filling in all the commit information, click on the

Commit new file button.

wid [0 Securiy M Senigs

I gt

Carcsl changes
Mabrplate D=t commit new file
P——

Frws e a ke weerifen e e S prpes
Faahued Aitions

(o R R

Figure 12.5: The commit message for a .yaml file

Stan commit -

Your repo now has a new GitHub workflow file. If you select the Actions

menu again, this time you will see that your screen looks like Figure 12.6.
The screen shows that GitHub has run the workflow successfully.

Wiori o

Figure 12.6: GitHub has successfully run the workflow

We can look at the workflow results by clicking on the Create main.yaml
link. You will see that the output indicates that the Explore-GitHub-
Actions job was successfully run, as shown in Figure 12.7.

ez Firs
@ Create main yami

i ol

Figure 12.7: The Explore-GitHub-Actions step has been successfully run

After clicking on the Explore-GitHub-Actions jobs link, the output will be
as shown in Figure 12.8.

‘ Creale mae yus

B [apewa Lammib bt

Figure 12.8: The Explore-GitHub-Actions job output

The workflow that we created in this section is actually the GitHub Actions
workflow. We will look at this in more depth in the next section.

GitHub Actions

What is GitHub Actions? It is a platform that allows you to automate the
complete integration and delivery of your project by automating the build,
test, and deployment processes. GitHub Actions also gives you the ability to
automate workflow processes such as pull requests, issue creation, and
others.

We have now successfully created our first GitHub workflow. Let’s take a
look at the workflow file to get an understanding of which GitHub Actions
we are using. The workflow file we will use is as follows:

name: GitHub Actions Demo
on: [push]
jobs:
Explore-GitHub-Actions:
runs-on: ubuntu-latest
steps:
- run: echo "[] The job was automatically triggered by

${{ GitHub.event_name }} event."
- run: echo "[J] This job is now running on a ${{

runner.

- run:

GitHub.
GitHub.

0s }}
server hosted by GitHub!"

echo "[J] The name of your branch is ${{
ref }} and your repository is ${{
repository }}."

- name: Check out repository code
uses: actions/checkout@v3

- run.

- run.

echo "[] The ${{ GitHub.repository }} repository
has been cloned to the runner."
echo "[] The workflow is now ready to test your
code on the runner."

- name: List files in the repository
run: |

1s ${{ GitHub.workspace }}
- run:

echo "[J] This job's status is ${{ job.status }}."

The following table explains the different configurations in the file:

Configuration
key

Name

on

Jobs

Explanation

The generic name we give to the workflow that will be used as a label for
viewing the results on the Actions page.

Indicates to GitHub what kind of Git operation will
trigger the workflow. In the example, it’s push. This
means that the workflow will be triggered every time
the Git push operation is detected in the repository.
Different Git event operations can be seen in the
GitHub docs: https://docs.GitHub.com/en/actions/using-
workflows/triggering-a-workflow#using-events-to-
trigger-workflows.

The workflow is made up of one or more jobs. These
jobs are run in parallel by default. Jobs can be
thought of as a single task that you want to do on
your code. In our example, we named the job Explore-
GitHub-Actions and it performs tasks defined by the run
configuration.

https://docs.github.com/en/actions/using-workflows/triggering-a-workflow#using-events-to-trigger-workflows

Configuration

key Explanation

Defines the runner that we want to use. The runner 1is
the machine that you choose to run your workflow on.
In our example, we are using the ubuntu-latest
machine, or, in other words, we want to use a machine
that runs the latest version of Ubuntu. A complete
list of runners can be seen in the following link:
https://docs.GitHub.com/en/actions/using-
jobs/choosing-the-runner-for-a-job.

runs-on

Each job contains a sequence of tasks called steps. A
step is where you define the operation you want to

Steps perform for the workflow. In our example, we defined
several steps such as run where we just print out
information.

Now, we are going to take a look at the GitHub Action workflow we have
for the sample application. The workflow can be found inside the
chapter12/.GitHub/workflows/build.yml file, as shown here:

name: Build and Package
on:
push:
branches:
- main
pull_request:
jobs:
lint:
name: Lint
runs-on: ubuntu-latest
steps:
- name: Set up Go
uses: actions/setup-go@vili
with:
go-version: 1.18
- name: Check out code
uses: actions/checkout@vi
- name: Lint Go Code
run: |
curl -sSfL

https://docs.github.com/en/actions/using-jobs/choosing-the-runner-for-a-job

https://raw.GitHubusercontent.com/golangci/golangci-
lint/
master/install.sh | sh -s -- -b $(go env GOPATH)/bin
$(go env GOPATH)/bin/golangci-lint run
build:
name: Build
runs-on: ubuntu-latest
needs: [lint]
steps:
- name: Set up Go
uses: actions/setup-go@vli
with:
go-version: 1.18
- name: Check out code
uses: actions/checkout@vl
- name: Build
run: make build

We will go now through this line by line to understand what the workflow is
doing. The following snippet tells GitHub that the workflow will be
triggered when source code is pushed to the main branch:

name: Build and Package
on:
push:
branches:
- main

The next snippet shows the different jobs that GitHub will run when the
event is detected; in this case, the 1int and build jobs. The job will be run
on an Ubuntu machine, as specified by the runs-on configuration:

jobs:

lint:
name: Lint
runs-on: ubuntu-latest
steps:

build:
name: Build
runs-on: ubuntu-latest
needs: [lint]
steps:

The defined jobs are made up of the steps shown in the following snippet:

jobs:
lint:
steps:
- name: Set up Go
uses: actions/setup-go@vi
with:
go-version: 1.18
- name: Check out code
uses: actions/checkout@vi
- name: Lint Go Code
run: |
curl -sSfL
https://raw.GitHubusercontent.com/golangci/golangci-
lint/
master/install.sh | sh -s -- -b $(go env GOPATH)/bin
$(go env GOPATH)/bin/golangci-lint run
build:
steps:
- name: Set up Go
uses: actions/setup-go@vi
with:
go-version: 1.18
- name: Check out code
uses: actions/checkout@vi
- name: Build
run: make build

The explanation of the steps performed for the 1int job is as follows:

1. Set up a Go 1.18 environment using the actions/setup-go GitHub
Action.

2. Check out the source code using the actions/checkout GitHub
Action.

3. Perform a linting operation on the source code. The shell script will
install the golangci-1int tool and run it using the golangci-lint
run command.

The other build job will perform the following steps:

1. Set up a Go 1.18 environment using the actions/setup-go GitHub
Action.

2. Check out the source code using the actions/checkout GitHub
Action.

3. Build the application by executing the make build command.

Each step defined inside a job uses GitHub Actions that perform different
operations such as checking out code, running shell script, and setting up
the environment for compiling the Go application.

In the next section, we will look at GitHub Packages and how to use them
to deploy the Docker image that we will build for our application.

Publishing Docker images

After developing your application, the next step is to deploy the application
so that your user can start using it. To do this, you need to package your
application. This is where Docker comes into the picture. Docker is a tool
that is used to package your application into a single file, making it easy to
deploy into a cloud environment such as Amazon, Google, and so on. We
will look at Docker images and containers in depth in Chapter 13,
Dockerizing an Application. We will look at the file with which we
configure Docker, called the bockerfile. We will briefly look at what this
file does.

Dockerfile

Dockerfile is the default filename used to name a file that contains
instructions for building an image for your application. The Dockerfile
contains instructions on steps for Docker to perform to package your
application into a Docker image.

Let’s take a look at the Dockerfile that we have inside the Chapteri2
directory:

1. Compile the app.

FROM golang:1.18 as builder

WORKDIR /app

COPY . .

RUN CGO_ENABLED=0 GO0S=linux go build -a -o bin/embed
2. Create final environment for the compiled binary.
FROM alpine:latest

RUN apk --update upgrade && apk --no-cache add curl ca-
certificates && rm -rf /var/cache/apk/*

RUN mkdir -p /app

3. Copy the binary from step 1 and set it as the default
command.

COPY --from=builder /app/bin/embed /app

WORKDIR /app

CMD /app/embed

There are three major steps to package the application:

1. Compile our Go application into a binary file called embed.

2. Create an environment that will be used to run our application. In our
example, we are using an environment or operating system called
alpine.

3. Copy the binary that was built in the first step into the new
environment that we set up in the second step.

We will use the Dockerfile in the next section to store the image in GitHub
Packages.

GitHub Packages

GitHub Packages is a service provided by GitHub that allows developers to
host their packages. These packages can be accessed either by your team or
made available to the general public. We will use this service to publish our
Docker image and make it available to be consumed by the public.

There are a few things we need to set up before we can deploy our Docker
image into GitHub Packages. This section will walk you through the steps
required to set up your repository. We will use
GitHub.com/nanikjava/golangci as a reference in this section.

You can access GitHub Packages from your repository by clicking on the
Packages link, as shown in Figure 12.9.

a) 1

Releases

P st hages

Figure 12.9: Access to GitHub Packages

Once you click on the Packages link, you will be shown a screen similar to
that in Figure 12.10. There will be no Packages displayed as we have not
yet published any.

E Clear current search query, filters, and sorts

@ 0 packages

N7

No results matched your search.

Try browsing all packages to find what you're looking for

Figure 12.10: The GitHub Packages page

In the next section, we will look at how to publish the Docker images that
we turn into packages on GitHub Packages.

Publishing to GitHub Packages

Security is an important part of GitHub. In order to be able to write Docker
images into GitHub Packages, let’s try to understand what is required.
Every time GitHub runs a workflow, a temporary token is assigned to the
workflow that can be used as an authentication key, allowing GitHub
Actions to perform certain operations. This key is known as GITHUB_TOKEN
internally.

The GITHUB_TOKEN key has default permissions that can be made restrictive,
depending on your organization’s needs. To see the default permissions,
click on the Settings tab from your repository, as shown in Figure 12.11.

(> actions [Projects [0 wiki 0 Security |~ Insights £ Settings

& General Actions permissions

Access O Allow all actions and reusable workflows

Ax Collaborators

i o .
Ch Moderation options o |.:1I5ﬂ.h e actions

Code and automation Allow nanikjaua actions and reusable workf
F Branches
© Tags Allow nanikjava, and select non-nanikjava, i
{4
@ Actions oy Mg Ao alowiang specific actions and reusable worl
I General Save
RLUnNnNers.

M uaa @

Figure 12.11: The Actions menu from Settings

Click on the Actions menu and select General. You will be shown the
default permissions, as shown in Figure 12.12. As you can see, the default

permissions are Read and write for the workflow.

Workflow permissions

Chane T delud perresanns. granted i the GITHUE TOKEMN when rereing weordioees, in Pes. repostony. You tan specily

il PN o e wOriTiow uRing) YAMY

D Prdd arvd Wit prmid RN
Read repotony conbenis Dermession

sk e (G ACBON, LA Ceale [ill FOqUEEE OF Subenil AiYRow) Dull SRgLE PEARW

u Alow GetHab Actons bo creabe snd spprove pull reguesty

Figure 12.12: The GITHUB_TOKEN default permissions

The workflow that we going to look at can be found inside
chapter12/.GitHub/workflows/builddocker.yml and looks like the
following:

name: Build Docker Image
on:
push:
branches:
- main
pull_request:
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ GitHub.repository }}
jobs:
push_to_GitHub_registry:
name: Push Docker image to Docker Hub
runs-on: ubuntu-latest
steps:

- name: Log in to the Container registry
uses: docker/login-action@v2
with:
registry: ${{ env.REGISTRY }}
username: ${{ GitHub.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Build and push Docker image
uses: docker/build-push-action@v3
with:
context: .
file: ./Dockerfile
push: true

tags: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME
}}/chapteril12:latest

The workflow performs the following steps in order to publish the Docker
image:

1.

The workflow logs in to the registry (GitHub Packages) using the
docker/login-action@v2 GitHub Action. The parameters supplied
to the GitHub Action are username, password, and registry.

The username is the GitHub username, which triggers the workflow
process. The registry parameter will be value from the REGISTRY
environment variable, which will be - ghcr.io. The password field
will be automatically populated using secrets.GITHUB_TOKEN.

The last step is to build and publish the Docker image using the
docker/build-push-action@v3 GitHub Action. The parameter
passed to the GitHub Action is the file that will be used to build the
Docker image. In our case, it’s called Dockerfile. The tag name used
to tag or label the Docker image will look like
ghcr.io/golangci/chapteri12:latest.

Now that we have everything set up, the next time you push any code
changes into the main branch, the workflow will run. An example of a
successful run can be seen in Figure 12.13.

@ Initial commit Build Docker Image 21

& Pusk Dockes imags 1o Github Packeges

Puih Docled image to Github Pachages

Figure 12.13: A successful workflow run publishing a Docker image

The Docker image can be seen on the GitHub Packages page, as shown in
Figure 12.14.

o c.hapte riz

Audd & Ressdmic 1o the lenhod repoaiory

Figure 12.14: The chapter12 Docker image inside GitHub Packages

In the next section, we will look at downloading our newly created Docker
image and using it locally.

Pulling from GitHub Packages

We have successfully set up CI for our application. Now, we have to test
whether the Docker image that was run as part of the CI process has
successfully built our application's Docker image.

Our Docker image is hosted inside GitHub Packages, which is made public
by default as our repository is a public repository. Figure 12.14 shows the
Docker images that are available to be used, including the command to pull
the image locally. Open your terminal, then run the following command:

docker pull ghcr.io/nanikjava/golangci/chapteri12:latest

You will get the following output:

latest: Pulling from nanikjava/golangci/chapteri12
213ec9aee27d: Already exists

3a904afc80b3: Pull complete

561cc7c7d83b: Pull complete

aee36b390937: Pull complete

4f4fb700ef54: Pull complete

Digest:
sha256:a355f55c33a400290776faf20b33d45096eb19a6431fb0Ob3
f723c17236e8b03e

Status: Downloaded newer image for
ghcr.io/nanikjava/golangci/chapter12:latest

The image has been downloaded to your local machine. Run the Docker
image using the following command:

docker run -p 3333:3333 ghcr.io/nanikjava/golangci/chapter12

You know that the container is running when you see the following output:

2022/08/18 08:03:10 Server Version : 0.0.1

Open your browser and enter http://localhost:3333 into the browser
address bar. You will see the login page. We have successfully completed
our CI process and are able to run the Docker image that we have built.

Summary

In this chapter, we explored CI, developed an understanding of why it is
important, and the benefits we get by setting up an automated CI process
for a project. We learned to set up a GitHub repository to prepare our CI
process and also learned to write a GitHub Actions workflow that enables
us to automate a number of steps for our application.

Using GitHub Actions, we were able to build our application into an
executable binary. This is performed every time we push code into the

repository. We learned about building Docker images for our application
and the benefits we get by packaging our application as a Docker image.

We learned about GitHub Packages and how to configure it to allow us to
push our Docker images to a central location. Having our application
packaged as a Docker image makes it easy for us to test our application
anywhere. We don’t have to worry about building the source code as
everything is packaged together into a single Docker image file.

In the next chapter we will learn on how to package our application as
container, which will make it easy to deploy as a single image and allow us
to deploy application in the cloud using different cloud providers.

Dockerizing an Application

In this chapter, we will learn about Docker and how to package applications
as Docker images. Understanding how to package your application as a
Docker image will allow you to deploy the application in any kind of
environment and infrastructure without having to worry about setting up the
infrastructure to build your application. Building a Docker image will allow
you to run your application anywhere you like: build once and deploy
anywhere.

In this chapter, we will learn about the following key topics:

Building a Docker image

Running a Docker image

Creating a Docker image from scratch
Understanding the Docker image filesystem

Looking at Docker Compose

Technical requirements

All the source code explained in this chapter can be checked out at
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-
Go/tree/main/chapter13.

Installing Docker

Docker is an open source platform that is used for software development,
making it easy to package and ship programs. Docker enables you to
package your application and run it in different kinds of infrastructure such
as cloud environments.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/chapter13

In this section, we will look at installing Docker on a local machine.
Different operating systems have different steps for installing it. Refer to
the Docker documentation for an in-depth installation guide relevant to
your operating system, which can be found at
https://docs.docker.com/engine/install/.

Note

This chapter was written on a Linux machine, so most of the command-line
applications that are outlined are only available for Linux.

After taking the steps to install Docker on our development machine, the
following are some of the things we do to ensure that everything is working
fine.

Use the following commands to check that the Docker engine is running:

systemctl list-units --type=service --state=running | grep
-1 docker && systemctl list-units --type=service --
state=active | grep -i containerd

You will see the following output if the engine has been installed correctly:

docker.service loaded active
running Docker Application Container Engine
containerd.service loaded active running

containerd container runtime

The output shows two different services running — docker .service and
containerd.service. The containerd.service service takes care of
launching the Docker image into a container and ensuring that all the local
machine services are set up to allow the container to run while the
docker.service service takes care of the management of the image and
communication with the Docker command-line tools.

Now that we know both services are running, let’s use the command-line
tools to check the communication with the engine. Use the following
command to communicate with the engine to list all the locally available

https://docs.docker.com/engine/install/

images — note you may need to have root privileges to do this so prefixing
with sudo might be required:

docker images

In our case, we get the output as shown in Figure 13.1, showing we have
downloaded two images. In your case, if this is your first time installing
Docker, it will be empty.

REPOSITORY TAG IMAGE ID CREATED SIZE
redis latest bba24achai?h 4 weeks ago 113ME
postgres latest 1ee?73e2b6cHb & weeks ago 3T7&HME

Figure 13.1: Docker images on a local machine

We have successfully completed the Docker installation on the local
machine. In the next section, we will go into more detail about using
Docker and understanding Docker images.

Using Docker

In this section, we will look at how to use Docker for day-to-day operations.
Let’s understand the concepts that are talked about when using Docker —
images and the container:

Docker image: This image is a file that contains our application,
including all the relevant operating system files.

Container: The image file is read and executed by the Docker engine.
Once it runs on the local machine it is called a container. You can
interact with the container using the Docker command-line tools.

We will look at using Docker to download and run a simple Hello World
application using the following command:

docker run hello-world

Open your terminal and run the following command:

$ docker run hello-world

This command will download the image file (if none exists locally) and
execute it. You will then see the following message:

Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world

2db29710123e: Pull complete

Digest:
sha256:10d7d58d5ebd2a652f4d93fdd86da8f265f5318c6a73cc5b
6a9798ff6d2b2e67

Status: Downloaded newer image for hello-world:latest

Once the image has been downloaded and run as a container, it will print
out the following output:

Hello from Docker!

This message shows that your installation appears to be

working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.

Https://docs.docker.com/get—started/

Now that we have had a taste of how to run an image file as a container, we
will explore Docker images more in the next section.

Docker images

Docker image files look like any other file on your local machine, except
they are stored in a special format that can only be understood by Docker.
Locally the image files are stored inside the
/var/lib/docker/image/overlay?2 directory. To see what images are
available, you can take a look at the repositories.json file, which looks
as follows:

{
"Repositories": {
"hello-world": {
"hello-world:latest":
"sha256:feb5d9feab6a5e9606aa995e879d862b82
5965ba48de054caab5ef356dc6b3412",
"hello-world@sha256:
10d7d58d5ebd2a652t4d93fdd86da8f265f5318c6a7
3cc5b6a9798ffe6d2b2e67":
"sha256: feb5d9fea6a5e9606aa995e879d862
b825965ba48ded54caab5ef356dc6b3412"

3

"redis": {

"redis:latest":
"sha256:bba24acha395b778d9522aladf5f0d6bba3e609
4b2d298e71ab08828bh880an01b",

"redis@sha256:69a3ab2516b560690e37197b71bc61ba24

5aafe4525ebdec

el1d8afbc5669e3e2":

"sha256:bba24acha395b778d9522aladf5f0d6bba3
€6094b2d298e71ab08828b880a01b"

Let’s explore the Docker directories that host the image files further. We
can get the image information using the following command:

docker images

The following output shows some information about the hello-world
container:

REPOSITORY TAG IMAGE
ID CREATED SIZE
hello-world latest feb5d9feab6ab 7 months

ago 13.3kB

The image ID for hello-world is feb5d9fea6as. Let's try to find the image
file inside /var/lib/docker using the following command:

sudo find /var/lib/docker -name 'feb5d9fea6a5*'

We will get the following output:

/var/lib/docker/image/overlay2/imagedb/content/sha256/feb5d9f
ea 6a5e9606aa995e879d862b825965bha48de054caab5ef356dc6b3412

Let's now look inside that file using the following command:

sudo cat

/var/lib/docker/image/overlay2/imagedb/content/sha256/feb5d9f
ea6ab5e9606aa995e879d862b825965ba48de054caab5ef356dc6b3412

You will see the following output:

{
"architecture": "amd64",
"config": {

1,
iy

"Cmd": [
"/bin/sh",
II_Cll,
"#(nop) ",
"CMD [\"/hello\"]"
1,
"Image": "sha256:b9935d4e8431fb1a7f0989304ec8

6b3329a99a25f5efdc7f09f3f8c41434ca6d",
"Volumes": null,

"WorkingDir": "",
"Entrypoint": null,
"OnBuild": null,

"Labels": {}
t
"created": "2021-09-23T23:47:57.442225064Z2",
"docker_version": "20.10.7",
"history": [

{
1

"os": "linux",
"rootfs": {
"type": "layers",
"diff_ids": [
"sha256:e07eelbaac5fae6a26f30cabfe54a36d3402f96afda3
18fe0a96cec4ca393359"

The following table outlines the meanings of some relevant fields from the
preceding JSON output:

Field

Name Description

This is the command that will be executed when the image
file is run as a container. For the hello-world example, it
will execute the hello executable when the container is
launched.

Cmd

rootfs stands for root filesystem, which means it contains
rootfs all the necessary operating system files that are required
to start itself as a normal machine.

The JSON information we saw previously can also be viewed using the
following command:

docker image inspect hello-world:latest

You will get output that looks as follows:

"Id": "sha256:feb5d9fea6a5e9606aa995e879d862h825
965ba48deb®54caab5ef356dc6b3412",
"RepoTags": [
"hello-world:latest"
1,

"RepoDigests": [

"hello-world@sha256:10d7d58d5ebd2a652

f4d93fdd86da8f265f5318c6a73cc5b6a9798ff6d2b2e67"
1,
llparentll: lllI’
"Comment": "",
"Created": "2021-09-23T23:47:57.442225064Z2",
"Container": "8746661ca3c2f215da94e6d3f7dfdcafaffs

ecOb21c9aff6af3dc379a82fbc72",

"ContainerConfig": {

"Cmd": [
"/bin/sh",
"-C",
ll#(nop) ll’

"CMD [\"/hello\"]"
1
"Image": "sha256:b9935d4e8431fb1a7f0989304ec86b
3329a99a25f5efdc7f09f3f8c41434ca6d",

I
"Architecture": "amd64",
"Os": "linux",

"Size": 13256,
"VirtualSize": 13256,
"GraphDriver": {
"Data": {
"MergedDir":
"/var/lib/docker/overlay2/c0d9b295437ab
cdeb9caeec51dcbdelbl11b0aeb3dd9e469135
7889defed757d9/merged",
"UpperDir":
"/var/lib/docker/overlay2/c0d9b295437ab
cdeb9caeec51dcbdelbl11b0aeb3dd9e4691357
889defed757d9/diff",
"WorkDir":
"/var/lib/docker/overlay2/c0d9b295437ab
cdeb9caeec51dcbdelbl11b0aeb3dd9e4691357

889defed757d9/work"
I
"Name": "overlay2"
I
e]

One of the interesting pieces of information in the output is the
GraphDriver field that points to the

/var/lib/docker/overlay2/c0d9b295437abcdeb9caeec51dcbdelbllb
Oaeb3dd9e469f357889defed757d9 directory containing the extracted
Docker image. For hello-world, it will be the hello executable file, as
shown next:

total 16

drwx--x--- 3 root root 4096 Apr 30 18:36 ./
drwx--x--- 30 root root 4096 Apr 30 19:21 ../
-rwW------- 1 root root O Apr 30 19:21 committed

drwxr-xr-x 2 root root 4096 Apr 30 18:36 diff/
-rw-r--r-- 1 root root 26 Apr 30 18:36 link

Taking a look inside the diff/ directory, we see the following executable
file:

drwxr-xr-x 2 root root 4096 Apr 30 18:36 .
drwx--x--- 3 root root 4096 Apr 30 18:36 ..
-rwxrwxr-x 1 root root 13256 Sep 24 2021 hello

Now that we have a good understanding of how Docker images are stored
locally, in the next section, we will look at using Docker to run the image
locally as a container.

Running images as containers

In this section, we will look at running Docker images as containers and
examine the different information that we can see when a container is
running.

Start by running a database Docker image and look at what information we
can get about the state of the container. Open the terminal window and run
the following command to run Redis locally. Redis is an open source
memory-based data store used to store data. Since data is stored in memory,
it is fast compared to storing on disk. The command will run Redis,
listening on port 7777:

docker run -p 7777:7777 -v /home/user/Downloads/redis-7.0-
rc3/data:/data redis --port 7777

Make sure you change the /home/user/Downloads/redis-7.0-rc3/data
directory to your own local directory, as Docker will use this to store the
Redis data file.

You will see the following message when the container is up and running:

1:C 05 May 2022 11:20:08.723 # 0000000000000 Redis 1is
starting 0000000000000

1:C 05 May 2022 11:20:08.723 # Redis version=6.2.6, bits=64,
commit=00000000, modified=0, pid=1, just started

1:C 05 May 2022 11:20:08.723 # Configuration loaded

1:M 05 May 2022 11:20:08.724 * monotonic clock: POSIX
clock_gettime

1:M 05 May 2022 11:20:08.724 * Running mode=standalone,
port=7777.

1:M 05 May 2022 11:20:08.724 * Ready to accept connections
Let’s use the Docker command-line tool to look at the running state of this

container. In order to do that, we need to get the ID of the container by
running the docker ps command; in our case, the output looks as follows:

CONTAINER
ID IMAGE COMMAND CREATED STAT
us PORTS
NAMES
elf58f395d06 redis "docker-entrypoint.s.." 5 minutes

ago Up 5 minutes 6379/tcp, 0.0.0.0:7777->7777/tcp,
L T7TT7T7->7777/tcp reverent_dhawan

The Redis container ID is e1f58f395d06. Using this information, we will
use docker inspect to look at the different properties of the running
container. Use docker inspect as follows:

docker inspect elf58f395d06

You will get output that looks like the following:

[L

"Mounts": [
{
llTypell : llbindll’
"Source": "/home/user/Downloads/redis-7.0-
rc3/data",
"Destination": "/data",
IIMOdell : 1] ll’
"RW": true,
"Propagation": "rprivate"
}
1,
"Config": {
"Env": [
"PATH=/usr/local/sbin:/usr/local/bin:
/usr/sbin:/usr/bin:/sbin:/bin",
"GOSU_VERSION=1.14",
1,

I
"NetworkSettings": {

"Ports": {
"6379/tcp": null,
"T7T777/tcp": [

{
"HostIp": "0.0.0.0",
"HostPort": "7777"
iy
{
"HOStIp": ll: :ll’
"HostPort": "7777"
}
]
Iy
"Networks": {
"bridge": {
}
}

The output shows a lot of information about the running state of the Redis
container. The main things that we are interested in are the network and the
mount. The NetworkSettings section shows the network configuration of
the container, indicating the network mapping parameter of the host to the
container — the container is using port 7777, and the same port is exposed
on the local machine.

The other interesting thing is the Mounts parameter, which points to the
mapping of /home/user/Downloads/redis-7.0-rc3/data to the /data
local host directory inside the container. The mount is like a redirection
from the container directory to the local machine directory. Using the
mount ensures that all data is saved to the local machine when the container
shuts down.

We have seen what a container is all about and how to look at the running
state of the container. Now that we have a good understanding of images
and containers, we will look at creating our own image in the next section.

Building and packaging images

In the previous section, we learned about Docker images and how to look at
the state of a running container; we also looked at how Docker images are
stored locally. In this section, we will look at how to create our own Docker
image by writing a Dockerfile.

We will look at building the sample application inside the chapteri13/embed
folder. The sample application is the same one we discussed in Chapter 4,
Serving and Embedding HTML Content. The application will run an HTTP
server listening on port 3333 to serve an embedded HTML page.

The Dockerfile that we will use to build the Docker image looks as
follows:

1. Compile the app.

FROM golang:1.18 as builder

WORKDIR /app

COPY . .

RUN CGO_ENABLED=0 GO00S=linux go build -a -o bin/embed
2. Create final environment for the compiled binary.
FROM alpine:latest

RUN apk --update upgrade && apk --no-cache add curl ca-
certificates && rm -rf /var/cache/apk/*

RUN mkdir -p /app

3. Copy the binary from step 1 and set it as the default
command.

COPY --from=builder /app/bin/embed /app

WORKDIR /app

CMD /app/embed

Let’s step through the different parts of the command to understand what it
is doing. The first step is to compile the application by using a pre-built
Golang 1.18 Docker image. This image contains all the necessary tools to
build a Go application. We specify /app as the working directory using the
WORKDIR command, and in the last line we copy all the source files using the
copY command and compile the source code using the standard go build
command line.

FROM golang:1.18 as builder

WORKDIR /app

COPY . .

RUN CGO_ENABLED=0 GO0S=linux go build -a -0 bin/embed

After successfully compiling the application, the next step is to prepare the
runtime environment that will host the application. In this case, we are
using a pre-built Docker image of the Alpine Linux operating system.
Alpine is a Linux distribution that is small in terms of size, which makes it
ideal when creating Docker images for applications to run on.

The next thing we want to do is to make sure the operating system is up to
date by using the - update upgrade command. This ensures that the
operating system contains all the latest updates, including security updates.
The last step is to create a new /app directory that will store the application
binary:

FROM alpine:latest

RUN apk --update upgrade && apk --no-cache add curl ca-
certificates && rm -rf /var/cache/apk/*

RUN mkdir -p /app

The final step is to copy over the binary from the previous step, which we
have labeled as builder, into the new /app directory. The CMD command
specifies the command that will be run when the Docker image is executed
as a container — in this case, we want to run our sample application embed
specified by the parameter /app/embed:

COPY --from=builder /app/bin/embed /app
WORKDIR /app
CMD /app/embed

Now we have gone through what the Dockerfile is doing, let’s create the
Docker image. Use the following command to build the image:

docker build --tag chapteri3 .

You will see an output that looks like the following, showing the different
steps and processes Docker is doing to build the image:

Sending build context to Docker daemon 29.7kB
Step 1/10 : FROM golang:1.18 as builder

---> 65b2f1fab535f
Step 2/10 : WORKDIR /app

---> Using cache

---> 7ab99618148c

Step 5/10 : FROM alpine:latest
---> Qac33e5fbafa

gtep 8/10 : COPY --from=builder /app/bin/embed /app

Step 10/10 : CMD /app/embed

---> Using cache

---> ade99a01b92e
Successfully built ade99a01b92e
Successfully tagged chapteri13:latest

Once you get the Successfully tagged message, the building process is
complete, and the image is ready on your local machine.

The new image will be labeled chapter13 and will look as follows when
we use the docker images command:

REPOSITORY TAG IMAGE

ID CREATED SIZE

chapteri13 latest ade99a01b92e 33 minutes
ago 16.9MB

golang 1.18 65b2f1fa535f 14 hours
ago 964MB

hello-world latest feb5d9feabab 7 months
ago 13.3kB

Run the newly created image using the following command:

docker run -p 3333:3333 chapterl3

The command will run the image as a container, and using the -p port
parameter, it exposes port 3333 inside the container to the same port 3333
on the host. Open your browser and type in http://localhost:3333 and
you will see the HTML login page, as shown in Figure 13.2:

Emad] Addreis

s R
Login

Figure 13.2: Web application served from a Docker container

In the next section, we’ll understand about Docker Compose.

Docker Compose

Docker provides another tool called Docker Compose, allowing developers
to run multiple containers simultaneously. Think about use cases where you
are building a server that requires temporary memory storage to store cart
information; this requires using an external application such as Redis,
which provides an in-memory database.

In this kind of scenario, our application depends on Redis to function
properly, which means that we need to run Redis at the same time we run
our application. There are many other different kinds of use cases where
there will be a need to use Docker Compose. The Docker Compose
documentation provides a complete step-by-step guide on how to install it
on your local machine: https://docs.docker.com/compose/install/.

Docker Compose is actually a file that outlines the different containers we
want to use. Let’s try to run the sample Docker Compose file that is inside
the chapter13/embed folder. Open the terminal and make sure you are

inside the chapter13/embed folder, then execute the following command:

docker compose -f compose.yaml up

You will get the following output:

[+] Running 7/7
ii cache Pulled 11.6s
ii 213ec9aee27d Already exists 0.0s
ii c99belb28c7f Pull complete 1.4s
ii 8ffObb7e55e3 Pull complete 1.8s
ii 477c¢33011f3e Pull complete 4.8s
ii 2bbc51a93257 Pull complete 4.8s

ii 2d27eae19281 Pull complete 4.9s
[+] Building 7.3s (15/15) FINISHED
=> [internal] load build definition from Dockerfile 0.0s
=> => transferring dockerfile: 491B 0.0s
=> [internal] load .dockerignore 0.0s

https://docs.docker.com/compose/install/

=> => transferring context: 2B

=> [internal] load metadata for
docker.io/library/alpine:latest 0.0s

=> [internal] load metadata for
docker.io/library/golang:1.18 0.0s

=> [builder 1/4] FROM
docker.io/library/golang:1.18 0.3s
=> [stage-1 1/5] FROM
docker.io/library/alpine:latest 0.1s
=> [internal] load build

context 0.2s

=> => transferring context:

18.81kB 0.0s

0.

0Os

=> [stage-1 2/5] RUN apk --update upgrade && apk --no-cache

add curl ca-certificates && rm -rf /var/cache/apk/*

=> [builder 2/4] WORKDIR /app 0.2s
=> [builder 3/4] COPY . . 0.1s

S

=> [builder 4/4] RUN CGO_ENABLED=0 GOOS=linux go build -a -

0 bin/embed 6.4s
=> [stage-1 3/5] RUN mkdir -p /app 1.4s

=> [stage-1 4/5] COPY --from=builder /app/bin/embed

/app 0.1s

=> [stage-1 5/5] WORKDIR /app 0.0s

=> exporting to image 0.1s

=> => exporting layers 0.1s

=> => writing image
sha256:84621b13c179c03eed57a23c66974659¢eae
4b50c97e3f8af13de99dbladf4c06 0.0s

=> => naming to docker.io/library/embed-server

[+] Running 3/3
i Network embed_default Created 0.1s
i Container embed-cache-1 Created 0.1s
i Container embed-server-1 Created 0.1s
Attaching to embed-cache-1, embed-server-1

embed-server-1 | 2022/09/10 06:24:30 Server Version
embed-cache-1 | 1:C 10 Sep 2022 06:24:30.898 #

0000000000000 Redis is starting 0000000000000

embed-cache-1 | 1:C 10 Sep 2022 06:24:30.898 # Redis

0.0.

1

version=7.0.4, bits=64, commit=00000000, modified=0, pid=1,

just started

embed-cache-1 | 1:M 10 Sep 2022 06:24:30.899 * Running
mode=standalone, port=6379.

embed-cache-1 | 1:M 10 Sep 2022 06:24:30.899 # Server
initialized

embed-cache-1 | 1:M 10 Sep 2022 06:24:30.899 * Loading RDB

produced by version 6.2.7

embed-cache-1 | 1:M 10 Sep 2022 06:24:30.899 * RDB age 10
seconds
embed-cache-1 | 1:M 10 Sep 2022 06:24:30.899 * Ready to

accept connections

Once everything is running, you should be able to access the server by
opening your browser and typing http://localhost:3333 in the address
bar.

The Docker Compose file looks as follows:

version: '3'
services:
server:
build:
ports:
- ""3333:3333"
cache:z
image: redis:7.0.4-alpine
restart: always
ports:
- '6379:6379'

The file outlines two containers that need to be run — the server is pointing
to our application server, and the build parameter uses the . dot notation.
This tells Docker Compose that the source (Dockerfile) to build the image
for this container is found in the local directory, while the cache service is a
Redis server, and it will be pulled from the Docker remote registry,
specifically version 7.0.4.

Summary

In this chapter, we learned about what Docker is and how to use it. Building
applications is one part of the puzzle, but packaging them to be deployed in
a cloud environment requires developers to understand Docker and how to

build Docker images for their applications. We looked at how Docker stores

images on your local machine and also inspected the state of the running
container.

We learned that when containers are running, there is a lot of information
generated that can help us to understand what’s going on with the container
and also the parameters used to run our application. We also learned about
the Dockerfile and used it to package our sample application into a
container to run it as a single Docker image.

In the next chapter, we will use the knowledge we gained in this chapter by
deploying our images to a cloud environment.

Cloud Deployment

In this chapter, we will learn about cloud deployment, specifically using
AWS as the cloud provider. We will look at some of the infrastructure
services provided by AWS and how to use them. We will learn about using
and writing code for creating the different AWS infrastructure services
using an open source tool called Terraform. Understanding the cloud and
how cloud deployment works has become a necessity for developers
nowadays rather than an exception. Gaining a good understanding of the
different aspects of cloud deployment will allow you to think outside the
box about how your application should run in the cloud.

Upon completion of this chapter, we will have learned about the following
key topics:

Learning basic AWS infrastructure
Understanding and using Terraform
Writing Terraform for local and cloud deployment

Deploying to AWS Elastic Container Service

The end goal of this chapter is to provide you with some knowledge about
the cloud and how to perform certain basic operations for deploying
applications to the cloud.

Technical requirements

All the source code explained in this chapter can be checked out at
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-
Go/tree/main/chapter14.

This chapter uses AWS services, so you are expected to have an AWS
account. AWS provides a Free Tier for new user registration; more
information can be found at https://aws.amazon.com/free.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/chapter14
https://aws.amazon.com/free

Note

Using any kind of AWS services will incur a cost. Please read and inform
yourself before using the service. We highly recommend reading what is
available on the Free Tier on the AWS website.

AWS refresher

AWS stands for Amazon Web Services and belongs to Amazon, which
provides the e-commerce platform amazon.com.au. AWS provides services
that allow organizations to run their applications in a complete
infrastructure without owning any of the hardware required.

The AWS brand is a household name for developers and almost all
developers have some basic direct/indirect exposure to using AWS tools or
its services. In this section, we will look at some services provided by AWS
as a refresher.

The question that comes to our mind is, why bother using services such as
AWS? Figure 14.1 summarizes the answer nicely. AWS provides services
that are available across different continents of the world and ready to be
used by organizations to fulfill their needs. Imagine that your organization
has customers across different continents. How much easier would it be to
run your application on different continents without having the burden of
investing in hardware on each of those continents?

http://amazon.com.au/

Global Network of AWS Regions

The AWS Cloud spans 87 Availability Zones within 27 geographic regions around the world, with announced
plans for 21 more Availability Zones and 7 more AWS Regions in Australia, Canada, India, Israel, Mew Zealand,

Spain, and Switzerland

Figure 14.1: Global AWS Regions

In the next section, we will look at the basic service provided by AWS
called AWS EC2, which provides computing resources.

Amazon Elastic Compute Cloud

Amazon Elastic Compute Cloud (EC2) is the basic computing resource
for developers to run their applications on. You can think of EC2 as a
virtual computer on Amazon infrastructure somewhere on the internet that
runs your application. You can select from a number of computer
configurations that you want to run your application on, from a small 512-
MB memory to a gigantic 384-GB memory computer with different
configurations of storage. Figure 14.2 shows the Instance Type Explorer
that can be accessed using the following URL:
https://aws.amazon.com/ec2/instance-explorer/.

https://aws.amazon.com/ec2/instance-explorer/

Instance Type Explorer

Instance Categories

L VI

Hardware Configuration

o Wars idesl une canan

SENERAL ARG

Figure 14.2: Instance Type Explorer

In the next section, we will look at another AWS resource related to
computing that is super important for applications, and that is storage.

Storage

Computing power is great for running applications, but applications require
long-term storage to store data such as log files and databases. There are a
number of different kinds of storage provided by AWS. For example,
Figure 14.3 shows the Elastic Block Store (EBS), which is a block storage
service. This block storage is like the normal storage that you have on your
local computer and is offered as a hard drive or a solid-state drive (SSD).

Aitach be yeer
Mmupngn ECD Ientacy Bwd piui il alion

Amarpa [Listic
Blogh o

Selet go vl Eype

Figure 14.3: EBS

The amazing thing about having this kind of storage is its elastic nature —
what this means is you can increase or decrease the size of storage anytime
you need without the worry of adding new hardware. Imagine what would
happen if you were running out of hard drive space on your local computer.
You would need to buy a new hard drive and install and configure it, none
of which is required when you use the AWS storage service. Attaching
storage to the EC2 instance of your choice enables your application to run
and store data in the cloud.

We will look at another AWS service that is as important as the one that we
have just discussed: networking.

Virtual Private Cloud

Now that your application is running in its own virtual computer, complete
with storage, the next question is how we configure a network in AWS so
that users can access the application. This is called a Virtual Private Cloud
(VPC). Think about a VPC as your own network setup, but without cables
— everything is configured and run using software. Figure 14.4 shows the
powerful capability of a VPC, enabling you to connect different networks
configured in different Regions.

Think of a Region as the physical location where AWS stores its hardware,
and if you run your applications in different physical locations, you are able
to connect them using a VPC.

Regisn 1 Begion 2

WP Sebnet in ALY WPC Sebned in AL 1

(= = =

Amazon ECT Amarsm ECT Amazon EC2 Amarom ECT
—— T

WPL Sebnet in AT 2 WP Sebnetin AZ 2

& & =

Figure 14.4: Virtual Private Networking

You have full control to configure the network of each Region your
application is running on, how these Regions communicate with your own
network, and how your application will be accessible via the public internet.

In the next section, we will look at another important service that a lot of
applications require which is storing data in a database.

Database storage

No matter what kind of applications you are building, you will require a
database to store data, and this requires a database server to be running.
AWS provides different database services ranging from those that store
small amounts of data to massively distributed databases across different
continents. One of these services is called Amazon Relational Database
Service (RDS), a managed service to set up, scale, and operate databases.

The databases that RDS can support are MySQL, PostgreSQL, MariaDB,
Oracle, and SQL Server. Figure 14.5 outlines the features provided by
RDS.

g el e
FECTrSEp—

Figure 14.5: RDS

Elastic Container Service

In Chapter 13, Dockerizing an Application, we learned how to create
Docker images to package our application so it can run as a container.
Packaging applications as Docker images allows us to run our application in
any kind of environment, from a local machine to the cloud. AWS provides
a related service called Elastic Container Service (ECS).

ECS helps us to deploy, manage, and scale out applications that have been
built as containers. A key scaling feature of ECS is the ability to scale your
application using the Application Auto Scaling capability. This feature
allows developers to scale applications based on certain conditions, such as
the following:

Step scaling: This means scaling an application based on the breach of
an alarm

Scheduled scaling: This is scaling based on a predetermined time

AWS tools

AWS provides different ways to use its services, including a web user
interface and the command-line interface (CLI). The main page of the
web UI can be seen in Figure 14.6. You will need to register for an AWS
account first before using any of the AWS tools.

The Ul is a very good place to start exploring the different services and go
through some sample tutorials to get a better understanding of each service.

Console Home SRR - i i |

Ewcurtly whited .- Welcome to AW

gEaa

EEEEERER

AW Hnalih otk aend g

Figure 14.6: AWS web Ul

The other AWS tool that is used to interact with the services is the CLI,
which needs to be installed locally
(https://docs.aws.amazon.com/cli/latest/userguide/getting-started-
install.html). The CLI makes it easier to interact with the AWS services
than the web UL. If you have installed it locally, when you run aws from
your terminal, you will see the following output:

usage: aws [options] <command> <subcommand> [<subcommand>
...] [parameters]
To see help text, you can run:
aws help
aws <command> help
aws <command> <subcommand> help
aws: error: the following arguments are required: command

In the next section, we will look at how to use some of the features
described here to deploy our application in AWS.

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Understanding and using
Terraform

In this section, we will look at another tool that makes it easier for us to
work with AWS services: Terraform. In the previous section, we learned
that AWS provides tools of its own, which is great for small tasks, but once
you start combining the different services it becomes harder to use them.

What is Terraform?

Terraform (https://www.terraform.io/) is an open source tool that provides
infrastructure as code (IaC). What this means is you write code to define
what kind of service you want to use and how you want to use it, and this
way, you can combine and link the different services together as a single
piece. This makes it easy for you as a developer to run and destroy
infrastructure as a unit instead of separate fragments.

The other benefit that Terraform provides is the ability to version control
the infrastructure code like normal application code, where it goes through
the normal review process, including the peer review process and also unit
testing, before deploying the infrastructure to production. With this, your
application and infrastructure will now go through the same development
process, which is trackable.

Installing Terraform

The Terraform installation process is straightforward: you can find a
complete set of instructions for your operating system in the HashiCorp
documentation at https://www.terraform.io/downloads.

For example, when writing this book we are using an Ubuntu-based distro,
so we download the AMDG64 binary from
https://releases.hashicorp.com/terraform/1.3.0/terraform 1.3.0 linux amd6
4.zip and include the Terraform directory into our PATH, as in the following

https://www.terraform.io/
https://www.terraform.io/downloads
https://releases.hashicorp.com/terraform/1.3.0/terraform_1.3.0_linux_amd64

snippet. The directory added to the PATH variable environment is a
temporary solution for the terminal that you are using. In order to store it,
you need to put it as part of your shell script (for Linux, if you are using
Bash, you can add this to your .bashrc file):

export PATH=$PATH:/home/user/Downloads/

To test whether the installation was successful, open the terminal and
execute Terraform:

Terraform

You should get the following output:

Usage: terraform [global options] <subcommand> [args]
The available commands for execution are listed below.
The primary workflow commands are given first, followed by
less common or more advanced commands.
Main commands:
init Prepare your working directory for other
commands

All other commands:

console Try Terraform expressions at an interactive
command prompt

fmt Reformat your configuration in the standard
style

For detailed information on how to install Terraform for your environment,

started/install-cli.

Now that we have completed the Terraform installation, we will learn how
to use some of the basic commands available in Terraform. The commands
will enable you to jumpstart your journey into the world of cloud
deployment.

https://developer.hashicorp.com/terraform/tutorials/aws-get-started/install-cli

Terraform basic commands

In this section, we will learn some basic Terraform commands that are often
used when writing code. We will also examine concepts that are relevant to
Terraform.

The init command

Every time we start writing Terraform code, the first command that we run
is terraform init. This command prepares all the necessary dependencies
required to run the code locally. The command performs the following
steps:

1. Downloads all the necessary modules that are used in the code.

2. Initializes plugins that are used in the code. For example, if the code
is deployed on AWS it will download the AWS plugins.

3. Creates a file called a lock file that registers the different
dependencies and versions that are used by the code.

To gain a better understanding of the previous steps, let’s run the command.
Open the terminal and change to the chapter14/simple directory, and
execute the following command:

terraform init

You will see an output as follows:

Initializing the backend...

Initializing provider plugins...

- Finding kreuzwerker/docker versions matching "~> 2.16.0"...
- Installing kreuzwerker/docker v2.16.0...

- Installed kreuzwerker/docker v2.16.0 (self-signed, key ID
BDO8OC4571C6104C)

Once the init process is complete, your directory will look like the
following:

— main.tf
— .terraform
L— providers
L— registry.terraform.io
L— kreuzwerker
L— docker
L— 2.16.0
L— linux_amd64
CHANGELOG.md
LICENSE
README . md
terraform-provider -

docker_v2.16.0
—— . terraform.lock.hcl
versions. tf

The . terraform directory contains the dependencies that are specified in
the code. In this example, it uses the kreuzwerker/docker plugin, which is
used to run Docker containers.

The .terraform.lock.hcl file contains the version information of the
dependencies, and it looks like the following:

This file is maintained automatically by "terraform
init".
Manual edits may be lost in future updates.
provider "registry.terraform.io/kreuzwerker/docker" {
version "2.16.0"

constraints "~> 2.16.0"

hashes = [

"h1:0cTn2QyCQNjDiJYylvqQFmz2dxJdOF/2/HBXBVGXU2E="",

]
}

The plan command

The plan command is used to help us understand the execution plan that
Terraform will be doing. This is a very important feature as it gives us
visibility of what changes will be performed to our infrastructure. This will
give us a better understanding of which parts of the infrastructure will be
impacted by the code. Unlike tools such as Chef or Ansible, Terraform is
interesting in that it will tend towards a target state and only make the
changes necessary to reach it. For example, if you had a target of five EC2
instances but Terraform only knew of three, it would take the steps needed
to reach that target of five.

Open the terminal, change to the chapteri14/simple directory, and execute
the following command:

terraform plan

You will get the following output:

Terraform will perform the following actions:
docker_container.nginx will be created
+ resource "docker_container" "nginx" {

+ attach = false
+ bridge = (known after apply)
+ command = (known after apply)
+ container_logs = (known after apply)
+ entrypoint = (known after apply)
+ env = (known after apply)
+ exit_code = (known after apply)
+ remove_volumes = true
+ restart = "no"
+ rm = false
+ security_opts = (known after apply)
+ shm_size = (known after apply)
+ start = true
+ stdin_open = false
+ tty = false
+ healthcheck {
+ interval = (known after apply)
+ retries = (known after apply)
+ start_period = (known after apply)
+ test = (known after apply)

+ timeout = (known after apply)

}
+ labels {
+ label = (known after apply)
+ value = (known after apply)
}
+ ports {
+ external = 8000
+ internal = 80
+ ip = "0.0.0.0"
+ protocol = "tcp"
}

}

docker_image.nginx will be created
+ resource "docker_image" "nginx" {
+ 1id = (known after apply)

+ repo_digest = (known after apply)

}
Plan: 2 to add, 0 to change, 0 to destroy.

The output shows that there will be 2 things added and e operations for
changing or destroying, which tells us that this is the first time we are
running the code or it’s still fresh.

The apply command

The normal process of running Terraform is that after init, we run apply
(however, if we are not sure about the impact, we use the plan command as
shown previously). Open the terminal, change to the chapteri14/simple
directory, and execute the following command:

terraform apply -auto-aprove

You will get the following output:

Terraform will perform the following actions:
docker_container.nginx will be created
+ resource "docker_container" "nginx" {

false
(known after apply)

+ attach
+ bridge

}

docker_image.nginx will be created
+ resource "docker_image" "nginx" {
+ id = (known after apply)

Plan: 2 to add, 0 to change, 0 to destroy.
docker_image.nginx: Creating...

docker_image.nginx: Still creating... [10s elapsed]
docker_image.nginx: Creation complete after 17s
[1d=sha256:2d389e545974d4a93ebdef09b650753a55f72d1ab4518d17a
30c0elb3e297444nginx:latest]

docker_container.nginx: Creating...

docker_container.nginx: Creation complete after 2s
[1d=d0c94bd4
b548e6a19c3afb907a777bcb602e965bc05db8ef6d0d380601bb0694 |
Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

As seen in the output, the nginx container will be downloaded (if it does not
exist as yet) and then run. Once the command is successfully run you can
test it by opening your browser and accessing http://localhost:8080. You
will see something like Figure 14.7.

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at pginx.com.

Thank you for using nginx.

Figure 14.7: nginx running in a container

The destroy command

The last command that we will look at is destroy. As the name implies, it
is used to destroy the infrastructure that was created using the apply

command. Use this command with caution if you are unsure about the
impact of the code on your infrastructure. Use the plan command before
running this to get better visibility of what will be removed from the
infrastructure.

Open the terminal and run the following command from the
chapteri4/simple directory:

Terraform destroy -auto-approve

You will get the following output:

docker_image.nginx: Refreshing state...
[id=sha256:2d389e545974d4a93ebdef09b650753a55f72d1ab4518d17a3
Oc 0elb3e297444nginx:latest]

docker_container.nginx: Refreshing state... [1d=9c46¢cff8
la27edb6aba08a448d715599c644aaa79h192728016db0d903da9fhbo]

Terraform will perform the following actions:
docker_container.nginx will be destroyed
- resource "docker_container" "nginx" {
- attach = false -> null
- command [
_ "nginX",
_ Il_glI’
- "daemon off;",
] -> null
- cpu_shares

-

docker_image.nginx will be destroyed
- resource "docker_image" "nginx" {

- id =
"sha256:2d389e545974d4a93ebdef@9b650753a55f7
2d1ab4518d17a30c0elb3e297444nginx:latest" ->
null

- keep_locally = false -> null

- latest =
"sha256:2d389e545974d4a93ebdef09b650753a55172
dl1ab4518d17a30c0elb3e297444" -> null

- name = "nginx:latest" -> null

- repo_digest =
"nginx@sha256:0b970013351304af46f322da126351

6b188318682b2ab1091862497591189ff1" -> null

O -> null

Plan: 0 to add, 0 to change, 2 to destroy.
docker_container.nginx: Destroying...
[1id=9c46cff8la27edb6aba
08a448d715599c644aaa79b192728016db0d903da9fb0]
docker_container.nginx: Destruction complete after 1s
docker_image.nginx: Destroying...
[1d=sha256:2d389e545974d4a93
ebdef0@9b650753a55f72d1ab4518d17a30c0elb3e297444nginx: latest]
docker_image.nginx: Destruction complete after 0Os

Destroy complete! Resources: 2 destroyed.

In the output, we can see that there are 2 infrastructures that are destroyed —
one is the container removed from memory, and the other is the removal of
the image from the local Docker registry.

The -auto-approve command is used to automatically approve the steps;
normally, without using this, Terraform will stop execution and ask the user
to enter Yes or No to continue at each step. This is a precautionary measure
to ensure that the user does indeed want to destroy the infrastructure.

In the next section, we will look at writing Terraform code and how it uses
providers. We will look at a few Terraform examples to get an
understanding of how it works to spin up different AWS infrastructure
services for deploying applications.

Coding in Terraform

HashiCorp, the creator of Terraform, created HashiCorp configuration
language (HCL), which is used in writing Terraform code. HCL is a
functional programming language with features such as loops, if statements,
variables, and logic flow that are normally found in programming
languages. Complete in-depth HCL documentation can be found at
https://www.terraform.io/language/.

Providers

https://www.terraform.io/language/

The reason why Terraform is so widely used is the number of extensions
that are available from the company and open source communities; these
extensions are called providers. A provider is a piece of software that
interacts with the different cloud providers and other resources in the cloud.
We will look at Terraform code to understand more about providers. The
following code snippets can be found inside the chapteri14/simple
directory:

terraform {
required_providers {

docker = {
source = "kreuzwerker/docker"
version = "~> 2.16.0"
}
3
}

resource "docker_image" '"nginx" {
name "nginx:latest"
keep_locally false

}

resource "docker_container" "nginx" {
image = docker_image.nginx.name

name = "hello-terraform"
ports {
internal = 80
external = 8000
3
}

The resource block in the code can be used to declare infrastructure or an
API. In this example, we are using Docker, specifically, docker_image and
docker_container. When Terraform runs the code it detects the
required_providers block, which is used to define a provider. A provider
is an external module that the code will be using, and this will be
automatically downloaded by Terraform from a central repository. In our
example, the provider that we are using is the kreuzwerker/docker Docker
provider. More information on this provider can be found at the following

Open the terminal, make sure you are inside the chapteri4/simple
directory, and run the following command:

https://registry.terraform.io/providers/kreuzwerker/docker/

terraform init

You will see the following output in your terminal:

Initializing the backend...

Initializing provider plugins...

- Finding kreuzwerker/docker versions matching "~> 2.16.0"...
- Installing kreuzwerker/docker v2.16.0...

- Installed kreuzwerker/docker v2.16.0 (self-signed, key ID
BDO80C4571C6104C)

Terraform downloads the provider and stores it inside the
chapter14/simple/.terraform folder. Now, let’s run the sample code and
see what we get, by running the following command in the same terminal:

terraform apply -auto-approve

You will see the following output:

docker_container.nginx will be created
+ resource "docker_container" "nginx" {
+ attach = false
} | o
docker_image.nginx will be created
+ resource "docker_image" "nginx" {
+ id = (known after apply)
}

Plan: 2 to add, 0 to change, 0 to destroy.

docker_image.nginx: Creation complete after 22s
[id=sha256:2d389e545974d4a93ebdef09b650753a55f72d1ab4518d17a
30c0elb3e297444nginx:latest]

docker_container.nginx: Creating...

docker_container.nginx: Creation complete after 2s
[1d=b860780
af83a4c719a916b87171d96801cc2243a61242354815f6d82dc6a5e40 |

Open your browser and go to http://localhost:8000. You will see something
like Figure 14.7.

Terraform downloads the nginx Docker image automatically to your local
machine and runs the nginx container using the port defined in the ports
code block (port 8000). To destroy the running container and delete the
image locally from the Docker registry, all you have to do is run the
following command:

terraform destroy -auto-approve

If you compare the steps involved to do the same thing manually using the
Docker command, it is more involved and error-prone; writing it in
Terraform makes it much easier to run and remove containers with a single
command.

In the next section, we will explore more examples to better understand
how to use Terraform for deploying applications.

Terraform examples

In the following sections, we will look at different ways we can use
Terraform, such as pulling images from GitHub and running them locally,
or building and publishing Docker images.

Note

Make sure every time you run Terraform examples that create AWS
resources to remember to destroy the resources using the terraform
destroy command.

All resources created in AWS incur charges, and by destroying them, you
will ensure there will be no surprise charges.

Pulling from GitHub Packages

The example code for this section can be found inside the
chapter14/github folder. The following snippet is from
pullfromgithub.tf:

#script to pull chapterl12 image and run it locally
#it also store the image locally
terraform {

required_providers {

docker = {
source = "kreuzwerker/docker"
version = "~> 2,13.0"
}
}
by
data "docker_registry_image" '"github" {
name = "ghcr.io/nanikjava/golangci/chapterl12:latest"
b
resource "docker_image" "embed" {
}
resource "docker_container" "embed" {
¥

The main objective of the code is to download the Docker image that we
built in Chapter 12, Building Continuous Integration. Once the Docker
image is downloaded, it will be run locally. Open your terminal, make sure
you are inside the chapter14/github directory, and run the following
command:

terraform init

Then run the following command:

terraform apply -auto-approve

You will see output in your terminal that looks like the following:

aata.docker_registry_image.github: Reading. ..
data.docker_registry_image.github: Read complete after 1s

[id=sha256:a355f55c33a400290776faf20b33d45096eb19a6431fb
0b3f723c17236e8hb03e]

docker_container.embed will be created
+ resource "docker_container" "embed" {

+ attach = false
+ ports {
+ external = 3333
+ internal = 3333
}

}

docker_image.embed will be created
+ resource "docker_image" "embed" {

¥ name =
"ghcr.io/nanikjava/golangci/chapterl2:latest"

}
Plan: 2 to add, 0 to change, 0 to destroy.

[id=sha256:684e34e77f40eele75bTd7d86982a4f4faeldbea3286682af
3222a270faa49b7ghcr.io/nanikjava/golangci/chapterl12:latest]
docker_container.embed: Creation complete after 7s
[1d=f47d1ab90331dd8d6dd677322f00d9a06676b71dda3edf2cb2e66
edc97748329]

Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

Open your browser and go to http://localhost:3333. You will see the login
page of the sample app.

The code uses the same docker provider that we discussed in the previous
section, and we use a new docker_registry_image command to specify
the address to download the Docker image from, in this case from the
ghcr.io/nanikjava/golangci/chapteri12:latest GitHub package.

The other HCL feature we are using is the data block, as shown here:
dééa "docker_registry_image" "github" {

name = "ghcr.io/nanikjava/golangci/chapterl12:latest"

}

The data block works similarly to resource, except it is only used for
reading values and not creating or destroying resources or to get data that
will be used internally as configuration to another resource. In our sample,
it is used by the docker_image resource, as shown here:

resource "docker_image" "embed" {
keep_locally = true
name "${data.docker_registry_image.github.name}"

}

AWS EC2 setup

In the previous examples, we looked at using the Docker provider to run
Docker containers locally. In this example, we will look at creating AWS
resources, specifically EC2 instances. An EC2 instance is basically a virtual
machine that can be initialized with a certain configuration to run in the
cloud to host your application.

In order to create resources in AWS, you will first need to already have an
AWS account. If you don’t have an AWS account, you can create one at
https://aws.amazon.com/. Once you have your AWS account ready, log in to
the AWS website, and in the main console (Figure 14.6) web page, click on
your name on the right side and it will display a drop-down menu, as shown
in Figure 14.8. Then click on Security credentials.

https://aws.amazon.com/

Figure 14.8: Security credentials option

Your browser will now show the identity and access management (IAM)
page, as shown in Figure 14.9. Select the Access keys (access key ID and
secret access key) option. Since you haven’t created any key, it will be
empty. Click on the Create New Access Key button and follow the
instructions to create a new key.

. Your ‘.}Ij‘(}l]:’ll}' Lregentals

Created Reiwen Ky o Ll Ui e : Shatin L

Figure 14.9: Access keys section

Once you complete the steps you will get two keys — an Access Key ID and
Secret Access Key. Keep these keys safe as they are used like a username
and password combination you use to create resources in AWS
infrastructure.

Now that you have the keys required, you can now open a terminal and
change into the chapteri4/simpleec?2 directory, and run the example as
follows:

terraform init

Next, run the following command to create the EC2 instance:

terraform apply -var="aws_access_key=xxxx" -
var="aws_secret_key=xxx" -auto-approve

Once completed you will see the output as follows:

Terraform will perform the following actions:
aws_instance.app_server will be created
+ resource "aws_instance" "app_server" {
+ ami = "ami-0ff8a91507f77f867"

}

aws_subnet.default-subnet will be created
+ resource "aws_subnet" "default-subnet" {

}

aws_vpc.default-vpc will be created
+ resource "aws_vpc" "default-vpc" {
+ arn = (known after apply)

}
Plan: 3 to add, 0 to change, 0 to destroy.

aws_instance.app_server: Creation complete after 24s [id=i-
0358d1df58e055d70]

The output shows three resources were created — the AWS instance (EC2),
an IP subnet, and a network VPC. Now, let’s take a look at the code (the
complete code can be seen inside the chapter14/simpleec2 directory). The
code requires your AWS keys, storing them inside the variable block as
aws_access_key and aws_secret_key:

terraform {

.

variable "aws_access_key" {
type = string

b

variable "aws_secret_key" {
type = string

}

provider "aws" {
region "us-east-1"
access_key = var.aws_access_key
secret_key = var.aws_secret_key

}

The keys will be passed to the aws provider to enable the provider to
communicate with the AWS service using our keys.

The following part of the code creates the VPC and IP subnet, which will be
used as a private network by EC2 instances:

resource "aws_vpc" "default-vpc" {

cidr_block = "10.0.0.0/16"
enable_dns_hostnames = true
tags = {
env = "dev"
3
}

resource "aws_subnet" "default-subnet" {
cidr_block = "10.0.0.0/24"
vpc_id = aws_vpc.default-vpc.id

}

The last resource the code defines is the EC2 instance, as follows:

resource "aws_instance" "app_server" {

ami = "ami-0ff8a91507f77f867"
instance_type = "t2.nano"
subnet_id = aws_subnet.default-subnet.id
tags = {

Name = "Chapteri14"
3

}

The EC2 instance type is t2.nano, which is the smallest virtual machine
that can be configured. It is linked to the IP subnet defined earlier by
assigning the subnet ID to the subnet_id parameter.

Deploying to ECS with a load balancer

The last example that we are going to look at is using AWS ECS. The
source code can be found inside the chapteri14/1becs directory. The code
will use ECS to deploy our Chapter 12 container hosted in GitHub
Packages and made scalable by using a load balancer. Figure 14.9 shows
the infrastructure configuration after running the code.

AWS

Figure 14.10: ECS with a load balancer

The code uses the following services:

An internet gateway: As the name implies, this is a gateway that
enables communication to be established between the AWS VPC
private network and the internet. With the help of the gateway, we open
our application to the world.

A load balancer: This service helps balance the incoming traffic
across the different networks configured, ensuring that the application
can take care of all incoming requests.

ECS provides the capability to scale the deployment process for containers.
This means that, as developers, we don’t have to worry about how to scale
the containers that are running our application, as this is all taken care of by
ECS. More in-depth information can be found at
https://aws.amazon.com/ecs/. The application is run the same way as in the
previous examples, using the terraform init and terraform apply
commands.

Note

The ECS example takes a bit longer to execute compared to the other
examples.

You will get output that looks like the following:

Terraform will perform the following actions:
aws_default_route_table.lbecs-subnet-default-route-
table will be created
+ resource "aws_default_route_table"
"lbecs-subnet-default-route-table" {

}

aws_ecs_cluster.lbecs-ecs-cluster will be created
resource "aws_ecs_cluster" "lbecs-ecs-cluster" {

}

aws_ecs_service.lbecs-ecs-service will be created
resource "aws_ecs_service" "lbecs-ecs-service" {

}

aws_ecs_task definition.lbecs-ecs-task-definition will

+ F#

+ F#

https://aws.amazon.com/ecs/

be created
+ resource "aws_ecs_task_definition"
"lbecs-ecs-task-definition" {
}
aws_internet_gateway.lbecs-igw will be created
+ resource "aws_internet_gateway" "lbecs-igw" {

aws_1b.lbecs-1load-balancer will be created
resource "aws_1lb" "lbecs-load-balancer" {

+ 3

aws_1lb_listener.lbecs-load-balancer-listener will be

created

+ resource "aws_lb_listener"
"lbecs-load-balancer-listener" {

}

aws_lb_target_group.lbecs-load-balancer-target-group

will be created

+ resource "aws_lb_target_group"
"lbecs-load-balancer-target-group" {

}
aws_security_group.lbecs-security-group will be created
+ resource "aws_security_group" "lbecs-security-group" {

}

aws_subnet.lbecs-subnet will be created
resource "aws_subnet" "lbecs-subnet" {

}

aws_subnet.lbecs-subnet-1 will be created
resource "aws_subnet" "lbecs-subnet-1" {

}

aws_vpc.lbecs-vpc will be created
resource "aws_vpc" "lbecs-vpc" {

+ 3 + 3

+ 3

Plan: 12 to add, © to change, 0 to destroy.

aws_ecs_service.lbecs-ecs-service: Creation complete after
2m49s [id=arn:aws:ecs:us-east-1:860976549008:service/lbecs-
ecs-cluster/lbecs-ecs-service]

Outputs:
url = "load-balancer-1956367690.us-east-1.elb.amazonaws.com"

Let’s break down the code to see how it uses ECS and configures the
internet gateway, load balancer, and network. The following code shows the
internet gateway declaration, which is simple enough as it requires to be
attached to a VPC:

resource "aws_internet_gateway" "lbecs-igw" {
vpc_id = aws_vpc.lbecs-vpc.id
tags = {
Name = "Internet Gateway"
}
b

resource "aws_default_route_table" "lbecs-subnet-default-

route-table" {

default_route_table_id =
aws_vpc.lbecs-vpc.default_route_table_id

route {
cidr_block = "0.0.0.0/0"
gateway_id = "${aws_internet_gateway.lbecs-igw.id}"
}
}

Besides that, the gateway will also be attached to a routing table declared
inside the aws_default_route_table block. This is necessary as this tells
the gateway how to route the incoming and outgoing traffic through the
internal private VPC network.

Now that our internal private network can communicate to the internet via a
gateway, we need to have network rules in place to ensure our network is
secure, and this is done in the following code:

resource "aws_security_group" "lbecs-security-group" {

name = "allow_http"
description = "Allow HTTP inbound traffic"
vpc_id = aws_vpc.lbecs-vpc.id
egress {
from_port =0
to_port =0
protocol = "-1"

cidr_blocks ["0.0.0.0/0"]

}

ingress {
description = "Allow HTTP for all"
from_port = 80
to_port = 3333
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]
b
}

The egress block declares the rule for outgoing network traffic, allowing
all protocols to pass through. The incoming network traffic rule is declared
in the ingress block, and allows ports between 80-3333 and only over TCP.

Using a load balancer requires two different subnets to be declared. In our
code example, this is as follows:

resource "aws_1lb" "lbecs-load-balancer" {

name = "load-balancer"
internal = false
load_balancer_type = "application"

security_groups [aws_security_group.lbecs-security-
group. id]

subnets = [aws_subnet.lbecs-subnet.id,
aws_subnet.lbecs-subnet-1.1id]
tags = {
env = "dev"
b
}

The last piece of code that we will look at is the ECS block, as follows:

resource "aws_ecs_cluster" "lbecs-ecs-cluster" {
name = "lbecs-ecs-cluster"

resource "aws_ecs_task _definition" "lbecs-ecs-task-

definition" {

family = "service"
requires_compatibilities = ["FARGATE"]
network_mode = "awsvpc"
cpu = 1024
memory = 2048

container_definitions

{

jsonencode([

name
image
"ghcr.io/nanikjava/golangci/chapteri12:latest"”

"lbecs-ecs-cluster-chapteri4"

hé%tMappings = [

containerPort = 3333

}
]
}
1)
}

resource "aws_ecs_service" "lbecs-ecs-service" {

name "lbecs-ecs-service"

cluster aws_ecs_cluster.lbecs-ecs-cluster.id

task_definition
aws_ecs_task_definition.lbecs-ecs-task-definition.arn

desired_count = 1

launch_type = "FARGATE"
network_configuration {
3

load_balancer {
target_group_arn

aws_lb_target_group.lbecs-load-
balancer-target-group.arn

container_name "lbecs-ecs-cluster-chapteri14"

container_port 3333
}
tags = {
env = "dev"
}
}

The preceding code contains three different code blocks that are explained
as follows:

aws_ecs_cluster: This block configures the name of the ECS cluster

aws_ecs_task_definition: This block configures the ECS task,
which specifies what kind of container it has to run, the virtual machine
configuration that the container will be running on, the network mode,
security group, and other options

aws_ecs_service: This block ties together the different services to
describe the complete infrastructure that will be run, such as security,

ECS task, network configuration, load balancers, public IP address, and
more

Once ECS has been spun up, it will print out in your console the load-
balanced public address you can use to access the application. For example,
when it was run, we got the following output in the terminal:

aws_1lb_listener.lbecs-load-balancer-listener: Creating...
aws_lb_listener.lbecs-load-balancer-listener: Creation
complete after 1s [id=arn:aws:elasticloadbalancing:us-east-
1:860976549008:1istener/app/load-
balancer/4ad0f8b815a06f02/d945bba®078d0c365]
aws_ecs_service.lbecs-ecs-service: Creation complete after
2m27s [id=arn:aws:ecs:us-east-1:860976549008:service/lbecs-
ecs-cluster/lbecs-ecs-service]

Apply complete! Resources: 12 added, 0 changed, 0 destroyed.
Outputs:

url = "load-balancer-375816308.us-east-1.elb.amazonaws.com"

Using the 1load-balancer-375816308.us-east-1.elb.amazonaws.com
address in the browser will show the application login page. This address is
dynamically generated by AWS, and you will get something different than
what is shown in the previous output.

Summary

In this chapter, we explored cloud solutions provided by AWS, and we
briefly looked at the different services offered, such as EC2, VPC, storage,
and others. We learned about the open source Terraform tools that make it
easy to create, manage, and destroy cloud infrastructure in AWS.

We learned how to install and use Terraform locally, and how to write
Terraform code to use Docker as a provider, allowing us to run containers
locally. Terraform also allows us to download, run, and destroy containers
locally with a single command.

We also explored different Terraform examples for creating AWS
infrastructure resources and looked at one of the advanced features of AWS
ECS.

In this last chapter of the book, you have learned the different things that
need to be done to deploy an application to the AWS cloud.

Index

As this ebook edition doesn't have fixed pagination, the page numbers
below are hyperlinked for reference only, based on the printed edition of
this book.

A

Amazon Elastic Compute Cloud (EC2) 239
Amazon Web Services (AWS) 238

tools 242

application

authentication, adding to 86, 87

basic middleware, adding to 90, 91

dummy user, creating 88, 89

session information, storing 95

structuring 100

tracing 40

user authentication 89, 90

Application Programming Interface (API) 103
apply command 249, 25

authentication 8

Axios

URL 1

*p}
co

B

banlist gotcha 174

basic middleware

adding, to application 90, 91
Buefy 139, 152

setting up 141

UI components 142, 143
Bulma

sample 140, 141

URL 139

C

Cleave.JS

input handling with 148, 149
reference link 150

client-side rendering (CSR) 120
command line tool (CLI) 242
container 221

Docker images, running as 227-22

content

bundling, with Go Embed 78-82
content domain network (CDN) 122
continuous integration (CI)

GitHub, setting up 200-204
importance 200

cookies 92, 93

Cross-Origin Resource Sharing (CORS) 91,
for secure applications 163-165
CRUD

generating, with sqlc 14-21
cryptography 89

cURL 71

Cygwin

URL 21

D

database

designing 6-9

setting up 13, 14

data entry

validating, with Vuelidate 143-14

104

, 105

db.go file 17, 18

defaults and error pages 182
destroy command 250, 251
Directed Acyclic Graph (DAG) 46
Docker 219

installing 4, 219, 220
reference link 4

using 221

docker-compose

running 58-60

Docker Compose 233-235
Docker Desktop

for Linux 4

for macOS 4

for Windows 4

Dockerfile 210

Docker images 221-224
building 230

packaging 230-232

publishing 209

publishing, to GitHub Packages 212-216
pulling, from GitHub Packages 216
running, as containers 227/-229
document object model (DOM) 120
dummy user 87

dynamic content

rendering 74-78

E

Elastic Block Store (EBS) 240
Elastic Container Service (ECS) 242
entity relationship diagram 7

errors

reporting, with JSON 112

F

feature flags 186

benefits 186

configuration 186-188

high-level architecture 190

feature flag server

feedback, gathering before launch 188

installing 188-190

risk mitigation 188

segment targeting 188

feature flags, integration 190

MicroService integration 193-197

web application 191, 192
frontend libraries 135

G

generate.go 101

GitHub

setting up 201-204

GitHub Actions 204, 205

workflow 206-209

GitHub Packages 210-212

Docker images, publishing to 212-21

Docker images, pulling from 216
Go Embed
used, for bundling content 78-82

Golang 64

Golang APIs

consuming 156-163

golog

using 26-29

Gorilla Mux 32

URL 67

using 67-72

Gorilla project 67

Go standard library 63

reference link 63

Go standard logging

exploring 23-26

H

handlers.go 101

HashiCorp configuration language (HCL) 252
reference link, for documentation 252
Hello World

with defaults 64-66

HTTP library 63

HTTP response status codes

reference link 33

I

infrastructure as code (IaC) 244
init command 245, 246

input handling

with Cleave.JS 148, 149
Instance Type Explorer

URL 239

internal/ 101

internet gateway 262

J

Jaeger 41-43

integration with 44-49

URL 41

Jaeger SDK

integrating 43, 44

JavaScript Object Notation (JSON) 105
data, converting from 108

data, converting to 108

errors, reporting 112

request model, defining 109, 11

response model, defining 111, 112

JavaScript Syntax eXtension (JSX) 120
JSONError

using 112-114

JSONMessage

using 114

JSON middleware 105-107

JSON Web Token (JWT) 170

banlist gotcha 174

cookies and validation middleware, setting 175-17

for session management 169, 170
logout gotcha 174

none algorithm gotcha 174

stale data gotcha 174

using, with cookies 174

using, with middleware 174

L

leveled logging 26

load balancer 262

local logging 29, 30

logging server

log messages, writing to 30-33
log levels 26

logout gotcha 174

M

makefile 21
building 21, 22

meta fields 181
metrics 50

adding, with Prometheus 50-57
metrics APIs
Instrument 52

Meter 52
MeterProvider 52
middleware 85, 90
basic middleware 90
migrations 102
models.go file 18

multiple outputs

configuring 33-35

mux 66

N

navigation guards 179
functionality 179

using 180-182

NMake

reference link 21

none algorithm gotcha 174
O

observability 37
OpenTelemetry 38

APIs 39

metrics 39

SDK 39

tracing 38

URL 38

OpenTelemetry specification 38, 39
components 39

data sources 39

instrumenting and libraries 39

reference link 39

OpenTelemetry specification, API
baggage 40

context 39

metrics 40

tracing 40

OpenTelemetry tracing API 40

P

packages

defining 100

plan command 247, 248

Postgres

setting up 5, 6

Postgres client tools

reference link 5

projects, supported by OpenTelemetry
reference link 50

Prometheus 50

used, for adding metrics 50-57

providers 252-254

psql client

reference link 6

Q

queries 102
query.sql_gen.go file 19
R

React 120, 121

Redis

using, for session 95-97
Representational State Transfer (REST) 30, 102
REST API 103

RESTful API 103

routing 63

S

scheduled scaling 242
server-side rendering (SSR) 120
session handling 92-94

session key 93

session management 169

JWTs, for 170

session middleware 107, 108
sessions 92

check flow 92

Redis, using for 95-97

SFC Greeter.vue

example 123

Single File Components (SFCs) 122, 152
single-page application (SPA) 130
Software Development Kit (SDK) 38
solid-state drive (SSD) 240

sqlc 9

CRUD, generating with 1-21
download link 9

installing 10

using 11-13

stale data gotcha 174

static content

rendering 72-74

step scaling 242

store 102

struct 109
Svelte 121

T

Tailwind 152
Tailwind project

creating 153-15

Terraform 244

apply command 249, 25

destroy command 250, 251

init command 245, 246

installing 244, 245

plan command 247, 24
URL 244
Terraform, examples 254

AWS EC2 setup 257-261

Docker images, pulling from GitHub packages 255-25

[@e)

load balancer, used to deploy container to ECS 261-2

U
user authentication 89, 90

v

virtual private network (VPC) 240
Vite

using 127-129

Vite project

creating 153-15

Vue 121

Vue app
components 124
creating 124
login page 124-12

Vuelidate

data entry, validating 143-14

Vue middleware

[@e]

creating 166-1

Vue Router 178

login page, routing 132, 13

navigations guards 179-181

using 130-132

Vuetify 136, 151

setting up 136, 137

UI components, using 137-13

URL 136
W

web session 92

Why subscribe?

Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you
Get a free eBook or video every month
Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at packtpub.com and as a print book customer, you are entitled to a discount
on the eBook copy. Get in touch with us at customercare@packtpub.com
for more details.

At www.packtpub.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on Packt books and eBooks.

http://packtpub.com/
mailto:customercare@packtpub.com
http://www.packtpub.com/

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by
Packt:

<pack®h

Network Automation
with Go

Learn how to automate network operations and build
applications using the Go programming language

NICOLAS LEIVA | MICHAEL KASHIN

Network Automation with Go

Nicolas Leiva, Michael Kashin

https://packt.link/9781800560925

ISBN: 978-1-80056-092-5

Understand Go programming language basics via network-related
examples

Find out what features make Go a powerful alternative for network
automation

Explore network automation goals, benefits, and common use cases

Discover how to interact with network devices using a variety of
technologies

Integrate Go programs into an automation framework
Take advantage of the OpenConfig ecosystem with Go

Build distributed and scalable systems for network observability

Microservices
with Go

Building scalable and reliable microservices with Go

ALEXANDER SHUISKOV

Microservices with Go

Alexander Shuiskov

https://packt.link/9781804617007

ISBN: 978-1-80461-700-7

G et familiar with the industry’s best practices and solutions in
microservice development

Understand service discovery in the microservices environment
Explore reliability and observability principles
Discover best practices for asynchronous communication

Focus on how to write high-quality unit and integration tests in Go
applications

Understand how to profile Go microservices

Packt is searching for authors like
you

If you’re interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their
insight with the global tech community. You can make a general
application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Hi!

Nick and Nanik here, authors of Full-Stack Web Development with Go,
really hope you enjoyed reading this book and found it useful for increasing
your productivity and efficiency in building and shipping production ready
apps with Golang and Vue.

It would really help us (and other potential readers!) if you could leave a
review on Amazon sharing your thoughts on the book.

Go to the link below to leave your review:

http://authors.packtpub.com/

https://packt.link/r/1803234199

Your review will help us to understand what’s worked well in this book, and
what could be improved upon for future editions, so it really is appreciated.

Best wishes,

AANIK

Download a free PDF copy of this
book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books
everywhere? Is your eBook purchase not compatible with the device of
your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version
of that book at no cost.

file:///tmp/calibre_4.99.5_tmp_8cqoqjzt/2mxwiw0e_pdf_out/OPS/xhtml/ch020.xhtml

Read anywhere, any place, on any device. Search, copy, and paste code
from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts,
newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

ttps://packt.link/free-ebook/9781803234199

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email
directly

file:///tmp/calibre_4.99.5_tmp_8cqoqjzt/2mxwiw0e_pdf_out/OPS/xhtml/ch020.xhtml

	Cover Page
	Table of Contents
	Preface
	Part 1: Building a Golang Backend
	Chapter 1: Building the Database and Model
	Technical requirements
	Installing Docker
	Setting up Postgres
	Designing the database
	Installing sqlc
	Using sqlc
	Setting up the database
	Generating CRUD with sqlc
	Building the makefile
	Summary

	Chapter 2: Application Logging
	Technical requirements
	Exploring Go standard logging
	Using golog
	Local logging
	Writing log messages to the logging server
	Configuring multiple outputs
	Summary

	Chapter 3: Application Metrics and Tracing
	Technical requirements
	Understanding OpenTelemetry
	Tracing applications
	Integrating the Jaeger SDK
	Adding metrics using Prometheus
	Running docker-compose
	Summary

	Part 2:Serving Web Content
	Chapter 4: Serving and Embedding HTML Content
	Technical requirements
	Handling HTTP functions and Gorilla Mux
	Rendering static content
	Rendering dynamic content
	Using Go embed to bundle your content
	Summary

	Chapter 5: Securing the Backend and Middleware
	Technical requirements
	Adding authentication
	Adding middleware
	Adding cookies and sessions
	Summary

	Chapter 6: Moving to API-First
	Technical requirements
	Structuring an application
	Exposing our REST API
	Converting to and from JSON
	Reporting errors with JSON
	Summary

	Part 3:Single-Page Apps with Vue and Go
	Chapter 7: Frontend Frameworks
	Technical requirements
	Server-side rendering versus single-page apps
	Introducing React, Vue, and more
	Creating a Vue app
	Application and components
	Using Vue Router to move around
	Summary

	Chapter 8: Frontend Libraries
	Technical requirements
	Understanding Vuetify
	Setting up Vuetify
	Using UI components
	Understanding Buefy
	Bulma sample
	Setting up Buefy
	UI components
	Validating data entry with Vuelidate
	Better input handling with Cleave.JS
	Summary

	Chapter 9: Tailwind, Middleware, and CORS
	Technical requirements
	Introducing Tailwind
	Consuming your Golang APIs
	CORS for secure applications
	Creating Vue middleware
	Summary

	Chapter 10: Session Management
	Technical requirements
	Session management and JWTs
	(Re)introducing Vue Router
	Navigation guards
	Defaults and error pages
	Summary

	Part 4:Release and Deployment
	Chapter 11: Feature Flags
	Technical requirements
	An introduction to feature flags
	Feature flag configuration
	Use cases for using feature flags
	The high-level architecture of feature flags
	Integration of the feature flag
	Summary

	Chapter 12: Building Continuous Integration
	Technical requirements
	Importance of CI
	GitHub Actions
	Publishing Docker images
	GitHub Packages
	Summary

	Chapter 13: Dockerizing an Application
	Technical requirements
	Installing Docker
	Using Docker
	Docker images
	Running images as containers
	Building and packaging images
	Docker Compose
	Summary

	Chapter 14: Cloud Deployment
	Technical requirements
	AWS refresher
	Understanding and using Terraform
	Terraform basic commands
	Coding in Terraform
	Terraform examples
	Summary

	Index
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Download a free PDF copy of this book

